
Journal of Medicine Surgery and Public Health, Год журнала: 2025, Номер unknown, С. 100193 - 100193
Опубликована: Апрель 1, 2025
Язык: Английский
Journal of Medicine Surgery and Public Health, Год журнала: 2025, Номер unknown, С. 100193 - 100193
Опубликована: Апрель 1, 2025
Язык: Английский
Critical Care Nursing Clinics of North America, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Digital Health, Год журнала: 2025, Номер 11
Опубликована: Март 1, 2025
Artificial Intelligence (AI) has demonstrated significant potential in transforming psychiatric care by enhancing diagnostic accuracy and therapeutic interventions. Psychiatry faces challenges like overlapping symptoms, subjective methods, personalized treatment requirements. AI, with its advanced data-processing capabilities, offers innovative solutions to these complexities. This study systematically reviewed meta-analyzed the existing literature evaluate AI's efficacy care, focusing on various disorders AI technologies. Adhering PRISMA guidelines, included a comprehensive search across multiple databases. Empirical studies investigating applications psychiatry, such as machine learning (ML), deep (DL), hybrid models, were selected based predefined inclusion criteria. The outcomes of interest efficacy. Statistical analysis employed fixed- random-effects subgroup sensitivity analyses exploring impact methodologies designs. A total 14 met criteria, representing diverse diagnosing treating disorders. pooled was 85% (95% CI: 80%-87%), ML models achieving highest accuracy, followed DL models. For efficacy, effect size 84% 82%-86%), excelling plans symptom tracking. Moderate heterogeneity observed, reflecting variability designs populations. risk bias assessment indicated high methodological rigor most studies, though algorithmic biases data quality remain. demonstrates robust capabilities offering data-driven approach mental healthcare. Future research should address ethical concerns, standardize methodologies, explore underrepresented populations maximize transformative health.
Язык: Английский
Процитировано
0Journal of Functional Morphology and Kinesiology, Год журнала: 2025, Номер 10(2), С. 119 - 119
Опубликована: Апрель 2, 2025
This narrative review explores the significant evolution of sports rehabilitation, tracing its trajectory from basic exercise therapies early 20th century to advanced, neuroplasticity-driven approaches 21st century, with a specific focus on anterior cruciate ligament reconstruction (ACLR). The primary aim is understand how neuroplasticity, motor control, and sensorimotor retraining can optimize recovery, reduce reinjury risk, enhance long-term athletic performance, synthesize current rehabilitation strategies that integrate innovative technologies, such as robotics, virtual reality (VR), biofeedback systems, address neurocognitive deficits contribute alarmingly high rates (9–29%) observed in young athletes post-ACLR. These include impaired proprioception, psychological factors like fear reinjury. methodology employed involves peer-reviewed literature databases including PubMed, Scopus, Web Science. synthesis findings underscores importance holistic approaches, targeted proprioceptive exercises, dual-task drills, immersive VR training, enhancing integration, decision-making, athlete confidence. Furthermore, this highlights critical need for monitoring interdisciplinary collaboration between neuroscientists, physiotherapists, engineers refine protocols ensure sustained recovery. By leveraging neuroplasticity advanced field shift purely physical restoration comprehensive recovery models significantly risks performance.
Язык: Английский
Процитировано
0BMC Nursing, Год журнала: 2025, Номер 24(1)
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0Journal of Medicine Surgery and Public Health, Год журнала: 2025, Номер unknown, С. 100193 - 100193
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0