Radiomics Analysis of Intratumoral and Various Peritumoral Regions From Automated Breast Volume Scanning for Accurate Ki-67 Prediction in Breast Cancer Using Machine Learning
Academic Radiology,
Год журнала:
2024,
Номер
32(2), С. 651 - 663
Опубликована: Сен. 10, 2024
Язык: Английский
Prediction of clinical outcome for high-intensity focused ultrasound ablation of adenomyosis based on non-enhanced MRI radiomics
International Journal of Hyperthermia,
Год журнала:
2025,
Номер
42(1)
Опубликована: Фев. 23, 2025
Objectives
The
study
aimed
to
develop
a
non-enhanced
MRI-based
radiomics
model
for
the
preoperative
prediction
of
efficacy
adenomyosis
after
high-intensity
focused
ultrasound
(HIFU)
treatment.
Язык: Английский
Multimodal pathomics feature integration for enhanced predictive performance in gastric cancer pathology through radiomic and CNN-derived features
Arabian Journal of Chemistry,
Год журнала:
2025,
Номер
0, С. 1 - 17
Опубликована: Март 12, 2025
Язык: Английский
Prediction of molecular subtypes of endometrial cancer patients on the basis of intratumoral and peritumoral radiomic features from multiparametric MR images
European Journal of Radiology,
Год журнала:
2025,
Номер
unknown, С. 112110 - 112110
Опубликована: Апрель 1, 2025
Язык: Английский
Comparative analysis of multi-zone peritumoral radiomics in breast cancer for predicting NAC response using ABVS-based deep learning models
Frontiers in Oncology,
Год журнала:
2025,
Номер
15
Опубликована: Май 14, 2025
Peritumoral
characteristics
demonstrate
significant
predictive
value
for
neoadjuvant
chemotherapy
(NAC)
response
in
breast
cancer
(BC)
through
tumor-stromal
interactions.
Radiomics
analysis
of
peritumoral
regions
has
shown
robust
capability
predicting
treatment
outcomes;
however,
the
optimal
thickness
maximizing
accuracy
remains
undefined.
To
establish
a
clinically
implementable
framework
early
identification
NAC
non-responders
standardized
prediction
modeling.
This
study
aims
to
determine
by
training
and
systematically
comparing
artificial
intelligence
(AI)-driven
radiomics
models
across
multiple
zones
using
Automated
Breast
Volume
Scanning
(ABVS).
A
total
402
BC
patients
who
received
were
retrospectively
analyzed.
Pre-treatment
ABVS
images
processed
extract
radiomic
features
from
five
interest
(ROIs):
intratumoral
region
(R0)
four
consecutive
(R2-R8)
extending
outward
at
2-mm
intervals.
The
cohort
was
divided
into
testing
cohorts.
ROI-specific
TabNet
developed
data.
Comparative
performed
comprehensive
performance
evaluation,
including
discrimination,
calibration,
clinical
utility
assessment,
classification
metrics,
identify
zone.
best-performing
model
ranked
importance,
with
subsequent
ablation
studies
validating
contribution
high-ranking
features.
Among
population,
138
(34.3%)
classified
as
non-responders.
Model
evaluation
demonstrated
progressively
improved
R0
R6,
area
under
ROC
curves
increasing
0.681
0.845.
R6
0.810
precision
0.765.
combined
integrating
enhanced
capability,
achieving
0.909,
0.841,
recall
0.902.
Feature
importance
identified
textural
heterogeneity
volumetric
most
influential
variables,
top
derived
predominantly
6-mm
region.
zone
response,
AI-driven
intratumoral-peritumoral
superior
performance.
ABVS-based
approach
enables
potential
non-responders,
facilitating
timely
therapeutic
modifications.
Язык: Английский
Intratumoral and peritumoral ultrasound radiomics analysis for predicting HER2-low expression in HER2-negative breast cancer patients: a retrospective analysis of dual-central study
Discover Oncology,
Год журнала:
2025,
Номер
16(1)
Опубликована: Июнь 5, 2025
Язык: Английский
Development of a Nomogram-Integrated Model Incorporating Intra-tumoral and Peri-tumoral Ultrasound Radiomics Alongside Clinical Parameters for the Prediction of Histological Grading in Invasive Breast Cancer
Ultrasound in Medicine & Biology,
Год журнала:
2024,
Номер
unknown
Опубликована: Окт. 1, 2024
Язык: Английский
Diagnosing breast cancer subtypes using MRI radiomics and machine learning: A systematic review
Journal of Radiation Research and Applied Sciences,
Год журнала:
2024,
Номер
18(1), С. 101260 - 101260
Опубликована: Дек. 26, 2024
Язык: Английский
Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model
Frontiers in Immunology,
Год журнала:
2024,
Номер
15
Опубликована: Дек. 13, 2024
To
explore
the
value
of
combined
radiomics
and
deep
learning
models
using
different
machine
algorithms
based
on
mammography
(MG)
magnetic
resonance
imaging
(MRI)
for
predicting
axillary
lymph
node
metastasis
(ALNM)
in
breast
cancer
(BC).
The
objective
is
to
provide
guidance
developing
scientifically
individualized
treatment
plans,
assessing
prognosis,
planning
preoperative
interventions.
Язык: Английский