Temporal and spatial variability of dynamic microstate brain network based on event-related potential analysis in underwater target recognition task DOI
Jiaqi Zhang,

Zhangsong Shi,

Huihui Xu

и другие.

Physiology & Behavior, Год журнала: 2025, Номер unknown, С. 114971 - 114971

Опубликована: Июнь 1, 2025

Язык: Английский

Develop an emotion recognition system using jointly connectivity between electroencephalogram and electrocardiogram signals DOI Creative Commons

Javid Farhadi Sedehi,

Nader Jafarnia Dabanloo, Keivan Maghooli

и другие.

Heliyon, Год журнала: 2025, Номер 11(2), С. e41767 - e41767

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

An ensemble deep learning framework for emotion recognition through wearable devices multi-modal physiological signals DOI Creative Commons

Durgesh Nandini,

Jyoti Yadav, Vijander Singh

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Май 18, 2025

Abstract The widespread availability of miniaturized wearable fitness trackers has enabled the monitoring various essential health parameters. Utilizing technology for precise emotion recognition during human and computer interactions can facilitate authentic, emotionally aware contextual communication. In this paper, an system is proposed first time to conduct experimental analysis both discrete dimensional models. An ensemble deep learning architecture considered that consists Long Short-Term Memory Gated Recurrent Unit models capture dynamic temporal dependencies within emotional data sequences effectively. publicly available devices EMOGNITION database utilized result reproducibility comparison. includes physiological signals recorded using Samsung Galaxy Watch, Empatica E4 wristband, MUSE 2 Electroencephalogram (EEG) headband a comprehensive understanding emotions. A detailed comparison all three dedicated been carried out identify nine emotions, exploring different bio-signal combinations. achieve average classification accuracy 99.14% 99.41%, respectively. performance device examined 2D Valence-Arousal effective model. Results reveal 97.81% 72.94% Valence Arousal dimensions, acquired results demonstrate promising outcomes in when compared with state-of-the-art methods.

Язык: Английский

Процитировано

0

Temporal and spatial variability of dynamic microstate brain network based on event-related potential analysis in underwater target recognition task DOI
Jiaqi Zhang,

Zhangsong Shi,

Huihui Xu

и другие.

Physiology & Behavior, Год журнала: 2025, Номер unknown, С. 114971 - 114971

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0