Computational Biology and Chemistry, Год журнала: 2024, Номер 112, С. 108142 - 108142
Опубликована: Июль 2, 2024
Язык: Английский
Computational Biology and Chemistry, Год журнала: 2024, Номер 112, С. 108142 - 108142
Опубликована: Июль 2, 2024
Язык: Английский
Computational Biology and Chemistry, Год журнала: 2025, Номер 115, С. 108347 - 108347
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
0Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
0Expert Opinion on Drug Discovery, Год журнала: 2025, Номер unknown, С. 1 - 21
Опубликована: Апрель 17, 2025
Drug-metabolizing enzymes (DMEs) and transporters (DTs) play integral roles in drug metabolism drug-drug interactions (DDIs) which directly impact efficacy safety. It is well-established that inhibition of DMEs DTs often leads to adverse reactions (ADRs) therapeutic failure. As such, early prediction such inhibitors vital development. In this context, the limitations traditional vitro assays QSAR models methods have been addressed by harnessing artificial intelligence (AI) techniques. This narrative review presents insights gained from application AI for predicting DME DT over past decade. Several case studies demonstrate successful applications enzyme-transporter interaction prediction, authors discuss workflows integrating these predictions into design regulatory frameworks. The has demonstrated significant potential toward enhancing safety effectiveness. However, critical challenges involve data quality, biases, model transparency. availability diverse, high-quality datasets alongside integration pharmacokinetic genomic are essential. Lastly, collaboration among computational scientists, pharmacologists, bodies pyramidal tailoring tools personalized medicine safer
Язык: Английский
Процитировано
0Computational Biology and Chemistry, Год журнала: 2024, Номер 112, С. 108142 - 108142
Опубликована: Июль 2, 2024
Язык: Английский
Процитировано
1