An integrated approach for urban flood risk prediction using AHP-TOPSIS model: a case study of Jaipur region DOI
Priti Deo, Masood Ahsan Siddiqui,

Lubna Siddiqui

и другие.

Natural Hazards, Год журнала: 2024, Номер unknown

Опубликована: Окт. 24, 2024

Язык: Английский

Analyzing urban form influence on pluvial flooding via numerical experiments using random slices of actual city data DOI
Chao Mei, H. Shi, Jiahong Liu

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 633, С. 130916 - 130916

Опубликована: Фев. 21, 2024

Язык: Английский

Процитировано

11

Continuing from the Sendai Framework midterm: Opportunities for urban digital twins in disaster risk management DOI
Edgardo Macatulad, Filip Biljecki

International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер 102, С. 104310 - 104310

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

9

Artificial neural networks for flood susceptibility analysis in Gangarampur sub-division of Dakshin Dinajpur, West Bengal, India DOI Creative Commons

Ankeli Paul

Frontiers in Engineering and Built Environment, Год журнала: 2025, Номер 5(1), С. 1 - 21

Опубликована: Янв. 31, 2025

Purpose The study aims to identify the areas of flood susceptibility and categorize Gangarampur sub-division into various zones. It also aspires evaluate efficacy integrating Geographic Information Systems (GIS) with Artificial Neural Networks (ANN) for analysis. Design/methodology/approach factors contributing floods such as rainfall, geomorphology, geo-hazard, elevation, stream density, land use cover, slope, distance from roads, Normalized Difference Water Index (NDWI) rivers were analyzed ANN model helps construct map area. For validating outcome, Receiver Operating Characteristic (ROC) is employed. Findings results indicated that proximity rivers, rainfall deviation, cover are most significant influencing occurrence in demonstrated a prediction accuracy 85%, its effectiveness Originality/value research offers novel approach by analysis sub-division. By identifying key deviation use, achieves 85% accuracy, showing risk mapping. These findings provide critical insights planners devise targeted mitigation strategies.

Язык: Английский

Процитировано

1

A framework for urban pluvial flood resilient spatial planning through blue-green infrastructure DOI

P Ambily,

Chithra N.R,

Mohammed Firoz C

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер 103, С. 104342 - 104342

Опубликована: Фев. 16, 2024

Язык: Английский

Процитировано

8

Characteristics and drivers of flooding in recently built urban infrastructure during extreme rainfall DOI
Chenchen Fan, Jingming Hou, Donglai Li

и другие.

Urban Climate, Год журнала: 2024, Номер 56, С. 102018 - 102018

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

7

Evaluating flood potential in the Mahanadi River Basin, India, using Gravity Recovery and Climate Experiment (GRACE) data and topographic flood susceptibility index under non-stationary framework DOI
Sachin Bhere, M. Janga Reddy

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(11), С. 17206 - 17225

Опубликована: Фев. 9, 2024

Язык: Английский

Процитировано

6

Reconciling and contextualising multi-dimensional aspects for consolidated water security index: A synthesis DOI
Nur Hairunnisa Rafaai, Khai Ern Lee

Journal of Environmental Management, Год журнала: 2024, Номер 359, С. 121067 - 121067

Опубликована: Май 1, 2024

Язык: Английский

Процитировано

5

Method for analyzing urban waterlogging mechanisms based on a 1D-2D water environment dynamic bidirectional coupling model DOI

Guangxue Luan,

Jingming Hou, Tian Wang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 360, С. 121024 - 121024

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

4

Drowning in Our Progress? Tackling the Growing Menace of Urban Floods in India DOI Creative Commons
Panna Chandra Nath, Anuradha Joshi

Integrated Journal for Research in Arts and Humanities, Год журнала: 2025, Номер 5(1), С. 24 - 29

Опубликована: Янв. 12, 2025

A recent key challenge called urban flooding has grasped Indian cities, collectively impacted by climate change and unsustainable infrastructural developments. Major cities throughout the country e.g., Mumbai, Delhi, Kolkata Chennai, as well smaller like Vadodara Guwahati, are facing increased frequency intensity of floods. Extreme rainfall events, sprawl, inadequate infrastructure drive this. Further, this can solely be a consequence heavy but, is intricately linked to man-made alterations encroachment on water bodies, antiquated drainage systems, surge in population leading higher waste production. The fast-paced urbanisation last few decades resulted decline natural bodies that once soaked excess downpours monsoon seasons. Additionally, systems many were designed for lesser rainfall, incapable coping with intense shorter spells. Accumulation siltation have further multi-folded inundation issues India. Due incurred economic losses human fatalities remain difficult believe. Collective awakening stakeholders climate-resilient infrastructure, proper management, upgrading outdated reduce inflated risks

Язык: Английский

Процитировано

0

Evaluating the Coupling Coordination Levels and Critical Obstacle Indicators of Urban Infrastructure Resilience: A Case Study in China DOI Creative Commons
Min Chen, Qian Zhang, Yu Jiang

и другие.

Buildings, Год журнала: 2025, Номер 15(3), С. 495 - 495

Опубликована: Фев. 5, 2025

Natural and man-made disasters significantly challenge the safety stability of urban infrastructure (UI), disrupting daily operations impeding economic development. However, existing research on resilience (UIR) lacks comprehensive categorization critical infrastructure, insufficiently considers impacts natural disasters, offers limited empirical analysis interactions among pressure, state, response (PSR) dimensions. This study aims to establish a UIR assessment index examine coupling coordination (CC) levels obstacle indicators PSR across four Chinese municipalities. The results reveal that (1) is most influential overall more amenable artificial interventions than pressure state resilience; (2) generally, CC in municipalities were relatively high, advancing from an inferiorly intermediately balanced development stage over period, highlighting effective strategies such as enhanced resource allocation post-disaster recovery initiatives are recommended for adoption by similar cities; (3) identified, targeted proposed based each municipality’s unique characteristics. findings offer theoretical insights practical implications enhancing perspective utilizing models.

Язык: Английский

Процитировано

0