Lecture notes in civil engineering, Год журнала: 2024, Номер unknown, С. 1078 - 1088
Опубликована: Янв. 1, 2024
Язык: Английский
Lecture notes in civil engineering, Год журнала: 2024, Номер unknown, С. 1078 - 1088
Опубликована: Янв. 1, 2024
Язык: Английский
Structure and Infrastructure Engineering, Год журнала: 2024, Номер unknown, С. 1 - 16
Опубликована: Ноя. 4, 2024
Among the natural risks to which structures and infrastructures are subjected, action of geohazards is often ignored. Several efforts required predict geological effects on existing built heritage, such as by employing sensor-based systems or performing periodical visual inspections. Alternatively, novel cost-effective techniques could be used. The paper presents a probabilistic-based approach evaluate occurrence subsidence phenomena affecting infrastructures, combining information provided multitemporal interferometry via synthetic aperture radar (MTInSAR) data unmanned aerial vehicle (UAV) photogrammetry. Given structure monitor period observation, idea consists retrieving MTInSAR about UAV flight surveys surrounding area at beginning end considered period. From both surveys, statistical distributions spatiotemporal velocities can processed evaluated toward predefined limit state. obtained results classified under different scenarios, reveal possible phenomena. proposed methodology was firstly validated real landslide (the vertical component assessed) and, subsequently, tested another case for risk prediction, showing satisfying capacity providing warnings employ mitigation plans.
Язык: Английский
Процитировано
11Journal of structural design and construction practice., Год журнала: 2025, Номер 30(3)
Опубликована: Апрель 18, 2025
Язык: Английский
Процитировано
0Engineering Geology, Год журнала: 2025, Номер 352, С. 108091 - 108091
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0E3S Web of Conferences, Год журнала: 2024, Номер 579, С. 03002 - 03002
Опубликована: Янв. 1, 2024
This paper presents a semi-automated approach for assessing building vulnerability on an urban scale, specifically focusing floods and heavy rainfall events. The method involves three steps: categorization of buildings using open geodata, development parametric models each category, probabilistic analysis to generate fragility curves. To overcome the challenge analyzing individual in large area, generalized based categories are utilized, reducing computational effort but introducing uncertainties. Probabilistic analyses conducted by adjusting simulation parameters address these is applied reference area Berlin as case study. results provide valuable insights into within different categories. research contributes field assessment offering practical efficient applicable at scale. It enables informed decisionmaking risk reduction strategies.
Язык: Английский
Процитировано
0Lecture notes in civil engineering, Год журнала: 2024, Номер unknown, С. 1078 - 1088
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0