Influence of material anisotropy on the mechanics of surface damage DOI
A.V. Savikovskii, А. С. Семенов, Mark Kachanov

и другие.

International Journal of Engineering Science, Год журнала: 2024, Номер 198, С. 104025 - 104025

Опубликована: Фев. 23, 2024

Язык: Английский

A review on the mechanics of graphene nanoplatelets reinforced structures DOI
Kelly Yee, Mergen H. Ghayesh

International Journal of Engineering Science, Год журнала: 2023, Номер 186, С. 103831 - 103831

Опубликована: Фев. 24, 2023

Язык: Английский

Процитировано

82

Modelling issues and advances in nonlocal beams mechanics DOI Creative Commons
Raffaele Barretta, Raimondo Luciano, Francesco Marotti de Sciarra

и другие.

International Journal of Engineering Science, Год журнала: 2024, Номер 198, С. 104042 - 104042

Опубликована: Фев. 20, 2024

Nonlocal continuum mechanics presents still open questions about applicability of integral constitutive theories to nanostructures current interest in Engineering Science. Nevertheless, nonlocal elasticity is widely exploited model size effects small-scale structures since it represents an effective tool avoid computationally expensive procedures. The known strain-driven approach proposed by Eringen has shown intrinsic incompatibility between and equilibrium requirements when applied structures. Such issue been acknowledged the scientific community merely for bounded continua. For structural problems defined unbounded domains, obstruction caused formulation a issue. present contribution definitely proves inapplicability spatial convolution proposes consistent both presented methodology based on stress-driven convolutions, representing key paradigm formulate well-posed theory effectively scale nanobeams applicative Nano-Mechanics.

Язык: Английский

Процитировано

23

A hybrid finite element and extended transfer matrix method for the dynamic modeling of fluid-conveying pipeline with breathing cracks DOI

Wenhao Ji,

Wei Sun, Donghai Wang

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 212, С. 111276 - 111276

Опубликована: Фев. 27, 2024

Язык: Английский

Процитировано

15

On wave propagation in nanobeams DOI Creative Commons
Raffaele Barretta, Annalisa Iuorio, Raimondo Luciano

и другие.

International Journal of Engineering Science, Год журнала: 2024, Номер 196, С. 104014 - 104014

Опубликована: Янв. 6, 2024

Wave propagation in Rayleigh nanobeams resting on nonlocal media is investigated this paper. Small-scale structure-foundation problems are formulated according to a novel consistent approach extending the special elastostatic analysis Barretta et al. (2022). Nonlocal effects of nanostructure modelled stress-driven integral law. External elasticity nano-foundation instead described by displacement-driven spatial convolution. The developed methodology leads well-posed continuum problems, thus circumventing issues and applicative difficulties Eringen–Wieghardt approach. interacting with nano-foundations then analysed dispersive features analytically detected exploiting strategy. Closed form expressions size-dependent dispersion relations established connection outcomes available literature contributed. A general provided address wave nanomechanical problems. Parametric studies finally accomplished discussed show length scale parameters characteristics small-scale systems current interest Nano-Engineering.

Язык: Английский

Процитировано

12

Flexural frequency analysis of damaged beams using mixture unified gradient elasticity theory DOI
Hossein Darban, S. Ali Faghidian

Composite Structures, Год журнала: 2025, Номер unknown, С. 119143 - 119143

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

2

On time-dependent nonlinear dynamic response of micro-elastic solids DOI
Mohammad Malikan, Victor A. Eremeyev

International Journal of Engineering Science, Год журнала: 2022, Номер 182, С. 103793 - 103793

Опубликована: Ноя. 28, 2022

Язык: Английский

Процитировано

34

Nonlocal gradient mechanics of nanobeams for non-smooth fields DOI
Raffaele Barretta, Andrea Caporale, Raimondo Luciano

и другие.

International Journal of Engineering Science, Год журнала: 2023, Номер 189, С. 103879 - 103879

Опубликована: Май 11, 2023

Язык: Английский

Процитировано

19

On torsion of FG elastic nanobeams on nonlocal foundations DOI Creative Commons
Raffaele Barretta, Raimondo Luciano, Francesco Marotti de Sciarra

и другие.

Composite Structures, Год журнала: 2024, Номер 340, С. 118146 - 118146

Опубликована: Апрель 24, 2024

A plethora of challenging nanomechanical applications deals with ultrasmall composite structures interacting nonlocal media. To capture size dependent behaviors, effective tools Nonlocal Continuum Mechanics can be conveniently adopted, provided that the relevant structural problem is well-posed. crucial improvement in modeling nanobeams on nanofoundations present work respect to formulation based Eringen–Wieghardt approach. Scale effects FG under torsion are effectively captured by exploiting consistent stress-driven integral theory elasticity. novel elastic foundations here introduced. Notably, constitutive behavior describing interaction between twisted and surrounding media modeled spatial convolution driven torsional rotation field. It shown governing mathematically represented an integro-differential formulation. An equivalent simpler differential then proven reduce computational burdens. Exemplar case-studies finally examined show efficacy developed methodology.

Язык: Английский

Процитировано

9

Dynamic analysis of double cracked bi-directional functionally graded nanobeam using the differential quadrature method DOI Creative Commons

Mohamed A. Attia,

M. S. Matbuly,

Tharwat Osman

и другие.

Acta Mechanica, Год журнала: 2024, Номер 235(4), С. 1961 - 2012

Опубликована: Янв. 5, 2024

Abstract This study investigates the free vibration behavior of a double cracked nanobeam composed bi-directional functionally graded material. The analysis incorporates Eringen’s nonlocal elasticity theory and Euler–Bernoulli theory. material properties are considered to vary in both thickness length directions. is modeled as series interconnected sub-beams, with rotational springs placed at sections. modeling approach accounts for discontinuities displacement resulting from bending, which directly related bending moment transmitted by section. problem solved using differential quadrature method, approximates derivatives field quantities employing weighted linear sum nodal values. By doing so, transformed into algebraic system. Various supporting cases examined, parametric conducted analyze impact axial transverse gradient indices, parameter, crack severity on obtained results.

Язык: Английский

Процитировано

8

Axial load induced vibrational changes in nonlocal stress-driven beams DOI Creative Commons
Indronil Devnath, I. M. Nazmul

Applications in Engineering Science, Год журнала: 2025, Номер unknown, С. 100223 - 100223

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1