International Journal of Engineering Science, Год журнала: 2024, Номер 198, С. 104025 - 104025
Опубликована: Фев. 23, 2024
Язык: Английский
International Journal of Engineering Science, Год журнала: 2024, Номер 198, С. 104025 - 104025
Опубликована: Фев. 23, 2024
Язык: Английский
International Journal of Engineering Science, Год журнала: 2023, Номер 186, С. 103831 - 103831
Опубликована: Фев. 24, 2023
Язык: Английский
Процитировано
82International Journal of Engineering Science, Год журнала: 2024, Номер 198, С. 104042 - 104042
Опубликована: Фев. 20, 2024
Nonlocal continuum mechanics presents still open questions about applicability of integral constitutive theories to nanostructures current interest in Engineering Science. Nevertheless, nonlocal elasticity is widely exploited model size effects small-scale structures since it represents an effective tool avoid computationally expensive procedures. The known strain-driven approach proposed by Eringen has shown intrinsic incompatibility between and equilibrium requirements when applied structures. Such issue been acknowledged the scientific community merely for bounded continua. For structural problems defined unbounded domains, obstruction caused formulation a issue. present contribution definitely proves inapplicability spatial convolution proposes consistent both presented methodology based on stress-driven convolutions, representing key paradigm formulate well-posed theory effectively scale nanobeams applicative Nano-Mechanics.
Язык: Английский
Процитировано
23Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 212, С. 111276 - 111276
Опубликована: Фев. 27, 2024
Язык: Английский
Процитировано
15International Journal of Engineering Science, Год журнала: 2024, Номер 196, С. 104014 - 104014
Опубликована: Янв. 6, 2024
Wave propagation in Rayleigh nanobeams resting on nonlocal media is investigated this paper. Small-scale structure-foundation problems are formulated according to a novel consistent approach extending the special elastostatic analysis Barretta et al. (2022). Nonlocal effects of nanostructure modelled stress-driven integral law. External elasticity nano-foundation instead described by displacement-driven spatial convolution. The developed methodology leads well-posed continuum problems, thus circumventing issues and applicative difficulties Eringen–Wieghardt approach. interacting with nano-foundations then analysed dispersive features analytically detected exploiting strategy. Closed form expressions size-dependent dispersion relations established connection outcomes available literature contributed. A general provided address wave nanomechanical problems. Parametric studies finally accomplished discussed show length scale parameters characteristics small-scale systems current interest Nano-Engineering.
Язык: Английский
Процитировано
12Composite Structures, Год журнала: 2025, Номер unknown, С. 119143 - 119143
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2International Journal of Engineering Science, Год журнала: 2022, Номер 182, С. 103793 - 103793
Опубликована: Ноя. 28, 2022
Язык: Английский
Процитировано
34International Journal of Engineering Science, Год журнала: 2023, Номер 189, С. 103879 - 103879
Опубликована: Май 11, 2023
Язык: Английский
Процитировано
19Composite Structures, Год журнала: 2024, Номер 340, С. 118146 - 118146
Опубликована: Апрель 24, 2024
A plethora of challenging nanomechanical applications deals with ultrasmall composite structures interacting nonlocal media. To capture size dependent behaviors, effective tools Nonlocal Continuum Mechanics can be conveniently adopted, provided that the relevant structural problem is well-posed. crucial improvement in modeling nanobeams on nanofoundations present work respect to formulation based Eringen–Wieghardt approach. Scale effects FG under torsion are effectively captured by exploiting consistent stress-driven integral theory elasticity. novel elastic foundations here introduced. Notably, constitutive behavior describing interaction between twisted and surrounding media modeled spatial convolution driven torsional rotation field. It shown governing mathematically represented an integro-differential formulation. An equivalent simpler differential then proven reduce computational burdens. Exemplar case-studies finally examined show efficacy developed methodology.
Язык: Английский
Процитировано
9Acta Mechanica, Год журнала: 2024, Номер 235(4), С. 1961 - 2012
Опубликована: Янв. 5, 2024
Abstract This study investigates the free vibration behavior of a double cracked nanobeam composed bi-directional functionally graded material. The analysis incorporates Eringen’s nonlocal elasticity theory and Euler–Bernoulli theory. material properties are considered to vary in both thickness length directions. is modeled as series interconnected sub-beams, with rotational springs placed at sections. modeling approach accounts for discontinuities displacement resulting from bending, which directly related bending moment transmitted by section. problem solved using differential quadrature method, approximates derivatives field quantities employing weighted linear sum nodal values. By doing so, transformed into algebraic system. Various supporting cases examined, parametric conducted analyze impact axial transverse gradient indices, parameter, crack severity on obtained results.
Язык: Английский
Процитировано
8Applications in Engineering Science, Год журнала: 2025, Номер unknown, С. 100223 - 100223
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1