Опубликована: Янв. 1, 2025
Язык: Английский
Опубликована: Янв. 1, 2025
Язык: Английский
Neural Processing Letters, Год журнала: 2022, Номер 55(4), С. 4519 - 4622
Опубликована: Окт. 31, 2022
Язык: Английский
Процитировано
135Energy Conversion and Management, Год журнала: 2023, Номер 283, С. 116916 - 116916
Опубликована: Март 16, 2023
Язык: Английский
Процитировано
104International Journal of Electrical Power & Energy Systems, Год журнала: 2023, Номер 149, С. 109073 - 109073
Опубликована: Март 5, 2023
Язык: Английский
Процитировано
69Energy Conversion and Management, Год журнала: 2024, Номер 301, С. 118045 - 118045
Опубликована: Янв. 5, 2024
Язык: Английский
Процитировано
27Applied Energy, Год журнала: 2022, Номер 322, С. 119475 - 119475
Опубликована: Июнь 22, 2022
Язык: Английский
Процитировано
51Sensors, Год журнала: 2023, Номер 23(6), С. 2932 - 2932
Опубликована: Март 8, 2023
Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung nodules are the main manifestation can help to diagnose at an early stage, lowering workload of radiologists and boosting rate diagnosis. Artificial intelligence-based neural networks promising technologies for automatically detecting employing patient monitoring data acquired from sensor technology through Internet-of-Things (IoT)-based system. However, standard rely on manually features, which reduces effectiveness detection. In this paper, we provide novel IoT-enabled healthcare platform improved grey-wolf optimization (IGWO)-based deep convulution network (DCNN) model The Tasmanian Devil Optimization (TDO) algorithm utilized select most pertinent features diagnosing nodules, convergence grey wolf (GWO) modified, resulting in GWO algorithm. Consequently, IGWO-based DCNN trained optimal obtained IoT platform, findings saved cloud doctor's judgment. built Android with DCNN-enabled Python libraries, evaluated against cutting-edge detection models.
Язык: Английский
Процитировано
29Energy, Год журнала: 2023, Номер 278, С. 127864 - 127864
Опубликована: Май 19, 2023
Язык: Английский
Процитировано
28Energy Reports, Год журнала: 2023, Номер 9, С. 6449 - 6460
Опубликована: Июнь 16, 2023
Accurate prediction of short-term wind power plays an important role in the safe operation and economic dispatch grid. In response to current single algorithm that cannot further improve accuracy, this study proposes a combined model based on data processing, signal decomposition, deep learning. First, outliers original can affect accuracy. This detects by Z-score method fills them with cubic spline interpolation ensure integrity data. Second, for volatility power, time series is decomposed using complete ensemble empirical modal decomposition adaptive noise (CEEMDAN). The component complexity calculated sample entropy (SE), components are reconstructed according SE size Finally, traditional convolutional neural network (CNN) structure improved bi-directional long memory (BiLSTM) used extract feature links between superimpose results each obtain final value. experimental demonstrate hybrid proposed has better performance terms performance.
Язык: Английский
Процитировано
26Energy, Год журнала: 2023, Номер 288, С. 129714 - 129714
Опубликована: Ноя. 20, 2023
Язык: Английский
Процитировано
20Knowledge-Based Systems, Год журнала: 2023, Номер 263, С. 110289 - 110289
Опубликована: Янв. 11, 2023
Язык: Английский
Процитировано
19