Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(4), С. 3865 - 3879
Опубликована: Апрель 29, 2024
Язык: Английский
Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(4), С. 3865 - 3879
Опубликована: Апрель 29, 2024
Язык: Английский
Processes, Год журнала: 2025, Номер 13(2), С. 405 - 405
Опубликована: Фев. 4, 2025
The economic dispatch (ED) problem focuses on the optimal scheduling of thermal generating units in a power system to minimize fuel costs while satisfying operational constraints. This article proposes modified version social group optimization (SGO) algorithm address ED with various practical characteristics (such as valve-point effects, transmission losses, prohibited operating zones, and multi-fuel sources). SGO is population-based metaheuristic strong exploration capabilities, but for certain types problems, it may stagnate local optimum due potential imbalance between exploitation. new version, named SGO-L, retains structure incorporates Laplace operator derived from distribution into all iterative solution update equations. adjustment generates more effective search steps space, improving exploration–exploitation balance overall performance terms stability quality. SGO-L validated four systems small (six-unit), medium (10-unit), large (40-unit 110-unit) sizes diverse characteristics. efficiency compared other algorithms. experimental results demonstrate that proposed robust than well-known algorithms particle swarm optimization, genetic algorithms, differential evolution, cuckoo algorithms) competitor mentioned study. Moreover, non-parametric Wilcoxon statistical test indicates promising original For example, standard deviation obtained by shows significantly lower values (6.02 × 10−9 USD/h six-unit system, 7.56 10−5 10-unit 75.89 40-unit 4.80 10−3 110-unit system) (0.44 50.80 274.91 1.04 system).
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Фев. 5, 2025
Язык: Английский
Процитировано
0Computers & Electrical Engineering, Год журнала: 2025, Номер 123, С. 110149 - 110149
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0Next Energy, Год журнала: 2025, Номер 8, С. 100256 - 100256
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Results in Control and Optimization, Год журнала: 2025, Номер unknown, С. 100543 - 100543
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Energy Informatics, Год журнала: 2025, Номер 8(1)
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113039 - 113039
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(7), С. 1042 - 1042
Опубликована: Март 23, 2025
The Static Economic Load Dispatch (SELD) problem is a paramount optimization challenge in power engineering that seeks to optimize the allocation of between generating units meet imposed constraints while minimizing energy requirements. Recently, researchers have employed numerous meta-heuristic approaches tackle this challenging, non-convex problem. This work introduces an innovative algorithm, named “Attaining and Refining Knowledge-based Optimization (ARKO)”, which uses ability humans learn from their surroundings by leveraging collective knowledge population. ARKO algorithm consists two distinct phases: attaining refining. In phase, gathers population’s top candidates, refining phase enhances performance other selected candidates. way learning improving with help candidates provides robust exploration exploitation capability for algorithm. To validate efficacy ARKO, we conduct comprehensive evaluation against eleven established algorithms using diverse set 41 test functions CEC-2017 CEC-2022 suites, then, three real-life applications also verify its practical ability. Subsequently, implement SELD considering several instances. examination numerical statistical results confirms remarkable efficiency potential complex tasks.
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104720 - 104720
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0