Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Virtual and Physical Prototyping, Год журнала: 2024, Номер 19(1)
Опубликована: Март 21, 2024
Fatigue life assessment of metal additive manufacturing (AM) products has remained challenging due to the uncertainty as–built defects, heterogeneity microstructure, and residual stress. In past few years, many works have been conducted develop models in order predict fatigue AM samples by considering existence inherent defects. This review paper addresses main issues regarding parts effect defects post processing strategies. Mechanisms that are contributing failure categorized discussed detail. Several modelling approaches exist case prediction. The common compatible with properties thoroughly explained discussing previous highlighting their major conclusions. addition, use machine learning is identified as future high performance. challenge today's fracture community was estimation complex geometries presence different types anisotropic state work proposes available tackle this challenge.
Язык: Английский
Процитировано
21Engineering Failure Analysis, Год журнала: 2025, Номер unknown, С. 109649 - 109649
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0International Journal of Fatigue, Год журнала: 2024, Номер unknown, С. 108724 - 108724
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0