Melting heat transport reliability on dynamics of tri-hybrid nanofluid due to inclined shrinking surface DOI Creative Commons
Muhammad Yasir, Roobaea Alroobaea, N. Ameer Ahammad

и другие.

Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 106059 - 106059

Опубликована: Апрель 1, 2025

Язык: Английский

Investigating the convective flow of ternary hybrid nanofluids and single nanofluids around a stretched cylinder: Parameter analysis and performance enhancement DOI Creative Commons

Mehdi Mahboobtosi,

Kh. Hosseinzadeh, Davood Domiri Ganji

и другие.

International Journal of Thermofluids, Год журнала: 2024, Номер 23, С. 100752 - 100752

Опубликована: Июль 1, 2024

Within this research, we examined the convective flow of a blend ternary hybrid nanofluids and single with stagnation point caused by stretched cylinder. The purpose study is to investigate effect using nanofluid instead nanofluid. Water used as base fluid in investigation. made copper Molybdenum disulfide, copper, silver. impact curvature parameter, nanoparticle volume fraction, mixed convection velocity ratio, shape factor, conjugate number Eckert parameters on temperature profiles has been investigated. Differential equations partial derivatives were transformed ordinary differential type. ODEs then solved RK5th method. greater advantages than enhances compared nanofluid, according study. Furthermore, results showed that when fraction factor improved, so did profile. moving from at equal 16.2 (Lamina) boosts 20 %. Also, 0.45, substituting tenfold.

Язык: Английский

Процитировано

37

Heat transfer analysis for magnetohydrodynamic peristalsis of Reiner–Philippoff fluid: Application of an artificial neural network DOI Creative Commons
J. Iqbal, F. M. Abbasi, Imran Ali

и другие.

Physics of Fluids, Год журнала: 2024, Номер 36(4)

Опубликована: Апрель 1, 2024

Present communication explores a novel application of the computational intelligence technique, namely, Levenberg–Marquardt scheme under Backpropagated Neural Network (LM-BNN) to solve mathematical model for magnetohydrodynamic peristaltic transport Reiner–Philippoff (R–Ph) pseudoplastic fluid considering influences Ohmic heating, mixed convection, and viscous dissipation through symmetric channel. The R–Ph is used in this investigation elucidate non-Newtonian behavior consideration. delineates intricate relationship between stress deformation rate within fluid. There are few studies available on that do not incorporate Joule magnetic field effects. Therefore, developed employ an artificial neural network technique with different approach has been examined before. governing equations problem simplified using long wavelength low Reynolds number approximations, resulting system numerically solved BVP4c MATLAB based shooting algorithm. Furthermore, dataset constructed proposed LM-BNN, eight scenarios motion by varying Bingham number, Brinkman Grashof parameter, Hartmann number. numerical divided into 15% testing, training, 70% validation, which utilized LM-BNN analyze solutions networks (LM-NNs) predicted results. consistency effectiveness validated regression analysis, stresses at wall, error histogram, correlation index, heat transfer, mean squared fitness curves, vary from 10−3→10−11. Variations several flow parameters affecting temperature velocity profiles explained physically graphs. Additionally, analysis transfer including absolute errors, provided tables. outcomes reveal improving tend increase profile. Tabular results indicate rates improve when assigning higher values whereas wall decrease parameter simulations valuable step determining whether data obtained reliable accurate. In terms error, disagreement those LM-NNs approximately 10−5→10−11. It clear consistent reliable.

Язык: Английский

Процитировано

19

Comparative Study of Hybrid, Tri-Hybrid and Tetra-Hybrid Nanoparticles in MHD Unsteady Flow with Chemical Reaction, Activation Energy, Soret-Dufour Effect and Sensitivity Analysis over Non-Darcy Porous Stretching Cylinder DOI Creative Commons

M Amudhini,

Poulomi De

Heliyon, Год журнала: 2024, Номер 10(15), С. e35731 - e35731

Опубликована: Авг. 1, 2024

Present study investigates influence of Soret-Dufour effects on MHD unsteady flow a tetra-hybrid nanofluid (Al

Язык: Английский

Процитировано

19

Application of machine learning for thermal exchange of dissipative ternary nanofluid over a stretchable wavy cylinder with thermal slip DOI Creative Commons

Hamid Qureshi,

Amjad Ali Pasha, Zahoor Shah

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 60, С. 104599 - 104599

Опубликована: Май 27, 2024

This article explores the enhancement of thermal exchange in a dissipative Triple-nanoparticle hybrid fluid over stretchable wavy cylindrical surface with slip effect, incorporating Python bvp algorithm artificial intelligence AI analysis numerical results. The stochastic gives enhanced and optimized results predictive modeling, randomness influencing parameters nonlinear turbulent behavior model. model has significant importance application noise reducing drag reduction devices or structures. Moreover, presented geometrical structure is useful enhancing conduction characteristic. intricate interplay constituent nanoparticles their effect on complex heat transfer optimization main focus this study. Mathematical Model PDEs flow problem converted into system ODEs by similarity transformations introducing dimensionless parameters. Numerical solutions emerged are obtained solver graphical presented. To expedite solution process enhance accuracy prediction, advanced algorithm, such as neural network machine learning technique adopted. dataset from embedded for further using Levenberg Marquardt Feed-forward Algorithm (LMFA) 10 computing neurons 4 output layers representing parametric variations. A rise speed observed higher value yield stress Newtonian-behavior i.e. Casson parameter stretching λ sheet, but shows decline turbulence . Temperature profile show descending inclination Eckert ratio Ec, Prandtl momentum-thermal diffusivity.

Язык: Английский

Процитировано

18

ANN-based Two hidden layers computational procedure for analysis of heat transport dynamics in polymer-based trihybrid Carreau nanofluid flow over needle geometry DOI Creative Commons
Adil Darvesh,

Fethi Mohamed Maiz,

Basma Souayeh

и другие.

Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100396 - 100396

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Thermal Brownian motion and thermophoretic of reacting hybridized nanoparticles in Williamson-water base fluid with convective cooling cylinder DOI Creative Commons

S.O. Salawu,

A.M. Obalalu,

E.O. Fatunmbi

и другие.

Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100370 - 100370

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Comparative Analysis of the Silver-Gold and Copper-Titanium dioxide Hybrid Nanoparticles Impact on Flow and Heat Transfer of the Pulsatile Blood in Occluded Cerebral Artery DOI
Nahid Najafi, Wala Almosawy,

M. Abbas

и другие.

Journal of Thermal Biology, Год журнала: 2025, Номер unknown, С. 104060 - 104060

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Thermal and MHD behavior of CNT Maxwell nanofluid over a stretchable cylinder DOI

M. Faraz,

Jang Min Park

Journal of Radiation Research and Applied Sciences, Год журнала: 2025, Номер 18(2), С. 101326 - 101326

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

2

Darcy–Forchheimer flow of Williamson ternary hybrid nanofluids over a stretching cylinder DOI

H. Fareed,

A. Abbasi, W. Farooq

и другие.

Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(3)

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

2

Heat transfer analysis of ternary hybrid Williamson nanofluids with gyrotactic microorganisms across stretching surfaces: Local non-similarity method DOI
Umar Farooq, Tao Liu, Umer Farooq

и другие.

Numerical Heat Transfer Part A Applications, Год журнала: 2024, Номер unknown, С. 1 - 22

Опубликована: Апрель 15, 2024

Managing and controlling energy amidst rapid industrial technological advancements pose significant challenges. Enhanced heat transfer processes, like free convection in solar panels nuclear power plants, offer potential to reduce consumption improve system efficiency. Understanding elements such as magnetic fields, thermal radiation, nanoparticle morphology can optimize fluid dynamics across various domains including energy, aerospace, power. This study aims develop a two-dimensional Williamson model with ternary hybrid nanofluids gyrotactic microorganisms deepen our understanding of transfer. Methodological enhancements include integrating viscous dissipation formulations adopting the Rosseland approximation address radiation effects accurately. By leveraging non-similarity transformations, equations are rendered nondimensional for efficient numerical solutions using MAT LAB. Graphical overviews tables aid comprehending key factors practical applications engineering analyses.

Язык: Английский

Процитировано

16