Progressive Green Nanocomposites for Microbial Fuel Cells—State-of-the-Art and Technical Advancements DOI
Ayesha Kausar

Polymer-Plastics Technology and Materials, Год журнала: 2024, Номер 63(15), С. 2151 - 2169

Опубликована: Июнь 16, 2024

Язык: Английский

Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review DOI

Raj Kumar Oruganti,

Alka Pulimoottil Biji,

Tiamenla Lanuyanger

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 876, С. 162797 - 162797

Опубликована: Март 11, 2023

Язык: Английский

Процитировано

94

Recent advances in artificial intelligence boosting materials design for electrochemical energy storage DOI Creative Commons
X.-B. Liu, Kexin Fan, Xinmeng Huang

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 490, С. 151625 - 151625

Опубликована: Апрель 24, 2024

In the rapidly evolving landscape of electrochemical energy storage (EES), advent artificial intelligence (AI) has emerged as a keystone for innovation in material design, propelling forward design and discovery batteries, fuel cells, supercapacitors, many other functional materials. This review paper elucidates burgeoning role AI materials from foundational machine learning (ML) techniques to its current pivotal advancing frontiers science storage, including enhancing performance, durability, safety battery technologies, cell efficiency longevity, fine-tuning supercapacitors achieve superior capabilities. Collectively, we present comprehensive overview recent advancements that have significantly accelerated development next-generation EES, offering insights into future research trajectories potential unlock new horizons science.

Язык: Английский

Процитировано

28

Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells DOI
Samuel Jun Hoong Ong, Amani Al‐Othman, Muhammad Tawalbeh

и другие.

Energy, Год журнала: 2023, Номер 277, С. 127721 - 127721

Опубликована: Май 4, 2023

Язык: Английский

Процитировано

34

Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization DOI Creative Commons
Hegazy Rezk, A.G. Olabi, Mohammad Ali Abdelkareem

и другие.

Journal of Marine Science and Engineering, Год журнала: 2023, Номер 11(3), С. 617 - 617

Опубликована: Март 15, 2023

The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce carbon footprint industry. development sustainable and cost-effective method producing gained lot attention. Water electrolysis is best most environmentally friendly hydrogen-based renewable energy. Therefore, identifying ideal operating parameters water process critical production. Three controlling factors must be appropriately identified boost generation, namely time (min), electric voltage (V), catalyst amount (μg). proposed methodology contains following two phases: modeling optimization. Initially, robust model in terms was established using an adaptive neuro-fuzzy inference system (ANFIS) based on experimental dataset. After that, modern pelican optimization algorithm (POA) employed identify duration, voltage, enhance Compared measured datasets response surface (RSM), integration ANFIS POA improved generated by around 1.3% 1.7%, respectively. Overall, this study highlights optimal parameter identification optimizing performance solar-powered electrocatalysis systems production applications. This research could pave way more widespread adoption technology industry, which would help industry’s promote sustainability.

Язык: Английский

Процитировано

30

Finite-time Pade-based adaptive FNN controller implementation for microbial fuel cell with delay and multi-disturbance DOI
Li Fu, Jiaqi Wang, Xiuwei Fu

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 98, С. 1034 - 1043

Опубликована: Дек. 13, 2024

Язык: Английский

Процитировано

15

Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives DOI
Amit Kumar, Saurabh Mishra, Nitin Kumar Singh

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 360, С. 121182 - 121182

Опубликована: Май 20, 2024

Язык: Английский

Процитировано

14

Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development DOI
Jifeng Li, Zhongbing Chen

Chemical Engineering Journal, Год журнала: 2024, Номер 489, С. 151323 - 151323

Опубликована: Апрель 15, 2024

Язык: Английский

Процитировано

12

Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices DOI Creative Commons
Roman Perchikov, Maxim Cheliukanov, Yu. V. Plekhanova

и другие.

Biosensors, Год журнала: 2024, Номер 14(6), С. 302 - 302

Опубликована: Июнь 8, 2024

Microbial biofilms present one of the most widespread forms life on Earth. The formation microbial communities various surfaces presents a major challenge in variety fields, including medicine, food industry, shipping, etc. At same time, this process can also be used for benefit humans-in bioremediation, wastewater treatment, and biotechnological processes. main direction using electroactive is their incorporation into composition biosensor biofuel cells This review examines fundamental knowledge acquired about structure biofilms, properties they have when bioelectrochemical devices, characteristics these structures different surfaces. Special attention given to potential applying latest advances genetic engineering order improve performance biofilm-based devices regulate processes that take place within them. Finally, we highlight possible ways dealing with drawbacks creation highly efficient biosensors cells.

Язык: Английский

Процитировано

7

The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives DOI
Shuyao Wang,

Andre Hadji-Thomas,

Ademola Adekunle

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 930, С. 172737 - 172737

Опубликована: Апрель 24, 2024

Язык: Английский

Процитировано

6

Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model DOI Creative Commons
Ahmed M. Nassef, Hegazy Rezk, Ali Alahmer

и другие.

Atmosphere, Год журнала: 2023, Номер 14(2), С. 295 - 295

Опубликована: Фев. 1, 2023

This study aims to identify the optimal operating parameters for carbon dioxide (CO2) capture process using a combination of artificial intelligence and metaheuristics techniques. The main objective is maximize CO2 capacity. proposed method integrates fuzzy modeling with RUNge Kutta optimizer (RUN) analyze impact three operational factors: carbonation temperature, duration, H2O-to-CO2 flow rate ratio. These factors are considered capture. A model was developed based on measured data points simulate in terms stated parameters. then used values ratio RUN. results compared an optimized performance response surface methodology (RSM) demonstrate superiority strategy. showed that suggested technique increased capacity from 6.39 6.99 by 10.08% 9.39%, respectively, RSM methods. implies effective approach this can be improve various industrial applications.

Язык: Английский

Процитировано

16