Feature Extraction Algorithm based Metaheuristic Optimization for Handwritten Character Recognition DOI Creative Commons
Muhammad Arif Mohamad, Muhammad Aliif Ahmad, Jamilah Mahmood

и другие.

Journal of Telecommunication Electronic and Computer Engineering (JTEC), Год журнала: 2024, Номер 16(2), С. 27 - 30

Опубликована: Июнь 30, 2024

Interest in feature extraction for Handwritten Character Recognition (HCR) has been growing due to numerous algorithms aimed at improving classification accuracy. This study introduces a metaheuristic approach utilizing the Honey Badger Algorithm (HBA) HCR. The Freeman Chain Code (FCC) is employed data representation. One challenge with using FCC represent characters that results vary depending on starting points, affecting chain code's route length. To address this issue, HBA proposed identify shortest length and minimize computational time performance metrics of HB-FCC algorithm are computation time. Experiments use code representations from Center Excellence Document Analysis (CEDAR) dataset, containing 126 uppercase letter characters. According results, method achieves 1880.28 requires only 1.07 seconds process entre set character images.

Язык: Английский

Advanced testing methods for proton exchange membrane electrolysis stacks DOI Creative Commons

Martin Höglinger,

Stefan Kartusch,

Joshua Eder

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 77, С. 598 - 611

Опубликована: Июнь 19, 2024

Язык: Английский

Процитировано

3

A comprehensive survey of honey badger optimization algorithm and meta-analysis of its variants and applications DOI Creative Commons
Ibrahim Hayatu Hassan, Mohammed Abdullahi, Jeremiah Isuwa

и другие.

Franklin Open, Год журнала: 2024, Номер 8, С. 100141 - 100141

Опубликована: Авг. 10, 2024

Metaheuristic algorithms are commonly used in solving complex and NP-hard optimization problems various fields. These have become popular because of their ability to explore exploit solutions problem domains. Honey Badger Algorithm (HBA) is a population-based metaheuristic algorithm inspired by the dynamic hunting strategy honey badgers, utilizing digging-seeking techniques. Since its introduction 2020, HBA has garnered widespread attention been applied across This review aims comprehensively survey improvement application problems. Additionally, conducts meta-analysis HBA's improvements, hybridization since introduction. According result survey, 52 studies presented improved using chaotic maps, levy flight mechanism, adaptive mechanisms, transfer functions, multi-objective mechanism opposition based learning techniques, 20 hybrid with other metaheuristics 101 uses original for wide acceptance within research community stems from straightforwardness, ease use, efficient computational time, accelerated convergence speed, high efficacy, capability address different kind issues, distinguishing it well-known approches presented.

Язык: Английский

Процитировано

3

Advanced modeling of PEM electrolyzers for microgrid systems: Incorporating electrochemical and thermal models DOI
Dalia Yousri, Rawdha H. AlKuwaiti, Hany E. Z. Farag

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 83, С. 755 - 773

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

3

Identifying the unknown parameters of PEM fuel cells based on a human-inspired optimization algorithm DOI
Badis Lekouaghet, Mohammed Haddad, M. Benghanem

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 129, С. 222 - 235

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

DC Virtual Inertia Control Strategy for PMSG in Off-Grid Wind-Hydrogen Production System Based on Extended State Observer and Global Fast Terminal Sliding Mode Control DOI

Zhongjian Kang,

Zhentao Dong, Jinfeng Li

и другие.

Journal of Electrical Engineering and Technology, Год журнала: 2025, Номер unknown

Опубликована: Май 8, 2025

Язык: Английский

Процитировано

0

Day-ahead scheduling of microgrid with hydrogen energy considering economic and environmental objectives DOI Creative Commons

Guangzhe Jin,

Kaixin Huang,

Chen Yang

и другие.

Energy Reports, Год журнала: 2024, Номер 12, С. 1303 - 1314

Опубликована: Июль 23, 2024

Язык: Английский

Процитировано

3

Hybrid CFD/techno-economic assessments of carbon capturing combustion system integrated with PEM electrolyzer for efficient hydrogen production DOI

Mohammadreza Mohammadpour,

Mehdi Ashjaee,

Amirreza Mohammadpour

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 469, С. 143240 - 143240

Опубликована: Июль 22, 2024

Язык: Английский

Процитировано

2

Optimal Capacity Configuration of Hybrid Electrolytic Cells Power to Hydrogen(P2H) System in Distribution System DOI
Yannan Dong, Zhuo Ma, Qiwei Wang

и другие.

IEEE Transactions on Applied Superconductivity, Год журнала: 2024, Номер 34(8), С. 1 - 5

Опубликована: Авг. 30, 2024

Язык: Английский

Процитировано

2

An Event-triggered and Dimension Learning Scheme WOA for PEMFC modeling and parameter identification DOI
Zhe Sun, Yiwen Wang, Xiangpeng Xie

и другие.

Energy, Год журнала: 2024, Номер 305, С. 132352 - 132352

Опубликована: Июль 11, 2024

Язык: Английский

Процитировано

1

Enhancing PEMEC Efficiency: A synergistic approach using CFD analysis and Machine learning for performance optimization DOI
Yukun Wang, Yudong Mao, Kaimin Yang

и другие.

Applied Thermal Engineering, Год журнала: 2024, Номер 255, С. 124018 - 124018

Опубликована: Июль 24, 2024

Язык: Английский

Процитировано

1