Application of supervised machine learning and Taylor diagrams for prognostic analysis of performance and emission characteristics of biogas-powered dual-fuel diesel engine DOI Creative Commons
Komarova Le, Minh Thai Duong, Dao Nam Cao

и другие.

International Journal of Renewable Energy Development, Год журнала: 2024, Номер 13(6), С. 1175 - 1190

Опубликована: Окт. 27, 2024

In the ongoing search for an alternative fuel diesel engines, biogas is attractive option. Biogas can be used in dual-fuel mode with as pilot fuel. This work investigates modeling of injecting strategies a waste-derived biogas-powered engine. Engine performance and emissions were projected using supervised machine learning methods including random forest, lasso regression, support vector machines (SVM). Mean Squared Error (MSE), R-squared (R²), Absolute Percentage (MAPE) among criteria evaluations models. Random Forest has shown better Brake Thermal Efficiency (BTE) test R² 0.9938 low MAPE 3.0741%. once more exceeded other models 0.9715 4.2242% estimating Specific Energy Consumption (BSEC). With 0.9821 2.5801% emerged most accurate model according to carbon dioxide (CO₂) emission modeling. Analogous results monoxide (CO) prediction based on obtained 0.8339 3.6099%. outperformed Linear Regression 0.9756% 7.2056% case nitrogen oxide (NOx) emissions. showed constant overall criteria. paper emphasizes how well especially prognosticate engines.

Язык: Английский

Full analysis and deep learning optimization of a sustainable and eco-friendly power plant to generate green hydrogen and electricity; A zero-carbon approach DOI

Poorya Asadbagi,

Adib Mahmoodi Nasrabadi, Carrie M. Hall

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 190, С. 277 - 297

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

3

Current Trends and Future Perspectives on ZnO-Based Materials for Robust and Stable Solar Fuel (H2) Generation DOI Creative Commons

Mam Ishaku Dagareh,

Hafeez Yusuf Hafeez, J. Mohammed

и другие.

Chemical Physics Impact, Год журнала: 2024, Номер 9, С. 100774 - 100774

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

3

Optimization of Thermal Performance in Lauric Acid‐Based Phase Change Materials Using a Priority Clustering Approach DOI
Osama Khan, Mohd Parvez, Pratibha Kumari

и другие.

Energy Storage, Год журнала: 2024, Номер 6(6)

Опубликована: Сен. 1, 2024

ABSTRACT This study investigates the thermal properties of lauric acid (LA) as a phase change material (PCM) using K ‐Means clustering method to analyze melting characteristics. focuses on optimization PCMs hybrid methodology analytic hierarchy process (AHP) and clustering. LA, enhanced with zinc oxide (ZnO) nanoparticles, was evaluated for its performance. LA's suitability PCM is based initial temperature, heating rate, final time melt. AHP employed determine weightage three critical outcomes: latent heat, point, conductivity. The weightages assigned were 59%, 31%, 11%, respectively, reflecting relative importance each outcome in assessing efficiency LA PCM. Furthermore, then applied categorize data these weighted outcomes. utilized input parameters, assigning 27% 15% 22% underscoring their significance analysis. optimal conditions identified an temperature 24.8°C, ieating rate 5.6°C/min, 81.4°C, melt 10.6 min. These resulted outcomes 208 J/g point 80.9°C, conductivity 0.21 W/m·K. approach provides robust framework optimizing performance, facilitating energy storage release practical applications.

Язык: Английский

Процитировано

2

CFD and RSM Assist in Reducing the LPG Consumption of Burners for Agarwood Oil Production in Thailand DOI

Phattharawan Chimchom,

Anirut Matthujak, Thanarath Sriveerakul

и другие.

Combustion Science and Technology, Год журнала: 2024, Номер unknown, С. 1 - 23

Опубликована: Июль 20, 2024

Язык: Английский

Процитировано

0

Parametric Evaluation of a Single Cylinder Diesel Engine Fueled with Goat-Urine Emulsified Diesel DOI
Pravin Katare, V. S. Kumbhar,

R. B. Tirpude

и другие.

Arabian Journal for Science and Engineering, Год журнала: 2024, Номер unknown

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

0

Application of supervised machine learning and Taylor diagrams for prognostic analysis of performance and emission characteristics of biogas-powered dual-fuel diesel engine DOI Creative Commons
Komarova Le, Minh Thai Duong, Dao Nam Cao

и другие.

International Journal of Renewable Energy Development, Год журнала: 2024, Номер 13(6), С. 1175 - 1190

Опубликована: Окт. 27, 2024

In the ongoing search for an alternative fuel diesel engines, biogas is attractive option. Biogas can be used in dual-fuel mode with as pilot fuel. This work investigates modeling of injecting strategies a waste-derived biogas-powered engine. Engine performance and emissions were projected using supervised machine learning methods including random forest, lasso regression, support vector machines (SVM). Mean Squared Error (MSE), R-squared (R²), Absolute Percentage (MAPE) among criteria evaluations models. Random Forest has shown better Brake Thermal Efficiency (BTE) test R² 0.9938 low MAPE 3.0741%. once more exceeded other models 0.9715 4.2242% estimating Specific Energy Consumption (BSEC). With 0.9821 2.5801% emerged most accurate model according to carbon dioxide (CO₂) emission modeling. Analogous results monoxide (CO) prediction based on obtained 0.8339 3.6099%. outperformed Linear Regression 0.9756% 7.2056% case nitrogen oxide (NOx) emissions. showed constant overall criteria. paper emphasizes how well especially prognosticate engines.

Язык: Английский

Процитировано

0