A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance DOI Creative Commons
Na Xiao, Yonghui Li,

Peiyan Sun

и другие.

Micromachines, Год журнала: 2024, Номер 16(1), С. 15 - 15

Опубликована: Дек. 26, 2024

In recent years, metal nanomaterials and nanoproducts have been developed intensively, they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, biomedicine. However, identified as potentially toxic, with the toxicity of nanoparticles posing significant risks to both human health environment. Therefore, toxicological risk assessment is essential identify mitigate potential adverse effects. This review provides a comprehensive analysis safety sustainability metallic (such Au NPs, Ag etc.) in key domains such medicine, environmental protection. Using dual-perspective approach, it highlights unique advantages machine learning data processing, predictive modeling, optimization. At same time, underscores importance traditional methods, particularly their ability offer greater interpretability more intuitive results specific contexts. Finally, comparative methods techniques for detecting presented, emphasizing challenges that need be addressed future research.

Язык: Английский

The role of Al substitution in Na3AlH6 hydrides: Structural and thermodynamic insights for hydrogen storage technologies DOI
Abdelmajid Assila, Ikram Belkoufa, Seddiq Sebbahi

и другие.

Journal of Power Sources, Год журнала: 2025, Номер 634, С. 236502 - 236502

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

3

Machine learning-based anomaly detection and prediction in commercial aircraft using autonomous surveillance data DOI Creative Commons
Tian Xia, Luyao Zhou,

Khalil Ahmad

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(2), С. e0317914 - e0317914

Опубликована: Фев. 6, 2025

Regarding the transportation of people, commodities, and other items, aeroplanes are an essential need for society. Despite generally low danger associated with various modes transportation, some accidents may occur. The creation a machine learning model employing data from autonomous-reliant surveillance transmissions is detection prediction commercial aircraft accidents. This research included development abnormal categorisation models, assessment recognition quality, anomalies. methodology consisted following steps: formulation problem, selection labelling, construction prediction, installation, testing. tagging technique was based on requirements set by Global Aviation Organisation business jet-engine aircraft, which expert pilots then validated. 93% precision demonstrated excellent match most effective model, linear dipole Furthermore, "good fit" verified its achieved area-under-the-curve ratios 0.97 identification 0.96 daily detection.

Язык: Английский

Процитировано

2

Performance of proton exchange membrane in solar-integrated Kalina cycle systems for green hydrogen production DOI
Santosh Kumar Singh, Alok Kumar Das, Amit Rai Dixit

и другие.

Thermal Science and Engineering Progress, Год журнала: 2025, Номер unknown, С. 103413 - 103413

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Metal hydrides for solid hydrogen storage: Experimental insights, suitability evaluation, and innovative technical considerations for stationary and mobile applications DOI

Ahmad Alobaid,

Mohammed Kamil,

Khalil Abdelrazek Khalil

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 128, С. 432 - 456

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

1

Machine Learning in Solid‐State Hydrogen Storage Materials: Challenges and Perspectives DOI Open Access
Panpan Zhou,

Qianwen Zhou,

Xuezhang Xiao

и другие.

Advanced Materials, Год журнала: 2024, Номер unknown

Опубликована: Дек. 20, 2024

Abstract Machine learning (ML) has emerged as a pioneering tool in advancing the research application of high‐performance solid‐state hydrogen storage materials (HSMs). This review summarizes state‐of‐the‐art ML resolving crucial issues such low capacity and unfavorable de‐/hydrogenation cycling conditions. First, datasets, feature descriptors, prevalent models tailored for HSMs are described. Specific examples include successful titanium‐based, rare‐earth‐based, solid solution, magnesium‐based, complex HSMs, showcasing its role exploiting composition–structure–property relationships designing novel specific applications. One representative works is single‐phase Ti‐based HSM with superior cost‐effective comprehensive properties, to fuel cell feeding system at ambient temperature pressure through high‐throughput composition‐performance scanning. More importantly, this also identifies critically analyzes key challenges faced by domain, including poor data quality availability, balance between model interpretability accuracy, together feasible countermeasures suggested ameliorate these problems. In summary, work outlines roadmap enhancing ML's utilization research, promoting more efficient sustainable energy solutions.

Язык: Английский

Процитировано

7

Experimental investigation and mathematical modeling of a hydrogen storage metal hydride reactor-phase change material system DOI
Serge Nyallang Nyamsi,

Wafeeq M. Davids,

Ivan Tolj

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 90, С. 274 - 287

Опубликована: Окт. 5, 2024

Язык: Английский

Процитировано

5

Influence of corrugated tube structure and flow rate on the hydrogen absorption performance of metal hydride reactor and structural optimization DOI

Wenyan Bi,

Yikai Hou,

Jianfeng Wan

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 190, С. 97 - 109

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

3

Optimization assisted divide–combine approach to model cooling of a PV module equipped with TEG by using a trapezoidal shaped hybrid nano-enhanced cooling channel and performance estimation with generalized neural networks DOI
Fatih Selımefendıgıl, Hakan F. Öztop

International Journal of Heat and Mass Transfer, Год журнала: 2025, Номер 241, С. 126757 - 126757

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

0

A review of artificial intelligence to thermal energy storage and heat transfer improvement in phase change materials DOI
Artur Nemś, Sindu Daniarta, Magdalena Nemś

и другие.

Sustainable materials and technologies, Год журнала: 2025, Номер unknown, С. e01348 - e01348

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Simulation toolchain for the development of metal hydride storage systems DOI
Nejc Klopčič,

Karin Rainwald,

Valentin Gruber

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 117, С. 393 - 408

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

0