International Journal of Hydrogen Energy, Год журнала: 2024, Номер 110, С. 371 - 385
Опубликована: Март 1, 2024
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 110, С. 371 - 385
Опубликована: Март 1, 2024
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 135312 - 135312
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0The Canadian Journal of Chemical Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 24, 2025
Abstract Chemical process safety accidents are characterized by their sudden onset, rapid evolution, and severe consequences. Developing effective emergency response decisions for such complex dynamic incidents requires comprehensively considering various knowledge domains. Relying solely on expert experience plans often fails to meet the demands of response. To enhance efficiency decision‐making in chemical accidents, this study proposes a method that leverages graph (CPSKG) large language models (LLMs) generating reliable decisions. The proposed uses seven‐step approach designing scenario ontologies. By aligning with characteristics domain texts ontology framework, natural processing (NLP) retrieval‐augmented generation using graphs (Graph RAG) techniques employed construct semantically rich CPSKG. entities relationships within reasoning capabilities LLMs, facilitating efficient A case was conducted validate reliability approach. results demonstrate LLM enhanced CPSKG outperforms other more As key contribution, improves sharing while auxiliary
Язык: Английский
Процитировано
0Journal of Loss Prevention in the Process Industries, Год журнала: 2025, Номер unknown, С. 105687 - 105687
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2024, Номер 110, С. 371 - 385
Опубликована: Март 1, 2024
Язык: Английский
Процитировано
2