International Journal of Hydrogen Energy, Год журнала: 2025, Номер 131, С. 221 - 228
Опубликована: Апрель 28, 2025
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2025, Номер 131, С. 221 - 228
Опубликована: Апрель 28, 2025
Язык: Английский
Journal of Energy Storage, Год журнала: 2025, Номер 113, С. 115519 - 115519
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1International Petroleum Technology Conference, Год журнала: 2025, Номер unknown
Опубликована: Фев. 17, 2025
Abstract A practical solution to energy transition and the increasing demand for is underground hydrogen storage (UHS). The contribution of (H2) as a clean source has proven be an effective substitute future use meet net-zero target reduce anthropogenic greenhouse gas emissions. One most important factors affecting H2 displacement capacity under geological circumstances column height. objective this study underscore importance large-scale reliable machine learning algorithms evaluate predict height varied thermophysical salinity conditions. In study, dataset 540 datapoints evaluation prediction generated, which involves three main parameters: density difference (Δρ), interfacial tension (IFT) contact angle (θ). correlation angles against various reservoir depths used evaluated. Thermophysical conditions include pressures (0.1-20 MPa), temperatures (25-70°C), salinities including deionized water, seawater brines 1 3 molar concentrations salts (NaCl, KCl, MgCl2, CaCl2, Na2SO4) from our experimental data. (h) predicted using (ML) models, viz., random forest (RF), decision tree (DT) gradient boosting (GB). Statistical data analysis performed generate distribution coefficient calculated while feature determined identify relationship each input parameter with output Pearson, Spearman, Kendall models. RF GB, demonstrated in have shown promising results providing accurate predictions maintaining generalizability. Various error assessment metrics MSE, RMSE, MAPE R2 are utilized evaluation. Prediction resulted values 0.995 training 0.999 testing model. Whereas GB model also superior performance 0.997 during phase phase. However, DT 0.994 phases respectively. While MSE value 0 obtained indicated overfitting. findings suggest that data-driven ML models can powerful tool accurately predicting effectively determine capacity, reducing time cost associated determination traditional methods. addition, advanced explored overcome challenges pertinent
Язык: Английский
Процитировано
1International Journal of Hydrogen Energy, Год журнала: 2025, Номер 109, С. 275 - 286
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 391, С. 125940 - 125940
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2025, Номер 131, С. 221 - 228
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0