Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 115986 - 115986
Опубликована: Фев. 1, 2025
Язык: Английский
Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 115986 - 115986
Опубликована: Фев. 1, 2025
Язык: Английский
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 415, С. 116277 - 116277
Опубликована: Июль 28, 2023
Язык: Английский
Процитировано
53Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 127, С. 107258 - 107258
Опубликована: Окт. 11, 2023
Язык: Английский
Процитировано
45Advanced Energy Materials, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Abstract This review highlights recent advances in machine learning (ML)‐assisted design of energy materials. Initially, ML algorithms were successfully applied to screen materials databases by establishing complex relationships between atomic structures and their resulting properties, thus accelerating the identification candidates with desirable properties. Recently, development highly accurate interatomic potentials generative models has not only improved robust prediction physical but also significantly accelerated discovery In past couple years, methods have enabled high‐precision first‐principles predictions electronic optical properties for large systems, providing unprecedented opportunities science. Furthermore, ML‐assisted microstructure reconstruction physics‐informed solutions partial differential equations facilitated understanding microstructure–property relationships. Most recently, seamless integration various platforms led emergence autonomous laboratories that combine quantum mechanical calculations, language models, experimental validations, fundamentally transforming traditional approach novel synthesis. While highlighting aforementioned advances, existing challenges are discussed. Ultimately, is expected fully integrate atomic‐scale simulations, reverse engineering, process optimization, device fabrication, empowering system design. will drive transformative innovations conversion, storage, harvesting technologies.
Язык: Английский
Процитировано
31Computers & Structures, Год журнала: 2024, Номер 297, С. 107342 - 107342
Опубликована: Апрель 4, 2024
This paper presents a literature review on methods for enabling real-time analysis in digital twins, which are virtual models of physical systems. The advantages twins numerous, including cost reduction, risk mitigation, efficiency enhancement, and decision-making support. However, their implementation faces challenges such as the need data analysis, resource limitations, uncertainty. focuses reducing computational demands, have not been systematically discussed literature. reviews categorizes tools accelerating modeling phenomena needs twins.
Язык: Английский
Процитировано
24International Journal of Mechanical Sciences, Год журнала: 2025, Номер unknown, С. 110075 - 110075
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Computational Mechanics, Год журнала: 2024, Номер 74(2), С. 333 - 366
Опубликована: Янв. 9, 2024
Язык: Английский
Процитировано
17Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, Год журнала: 2024, Номер 18(1), С. 33 - 51
Опубликована: Янв. 2, 2024
Engineering-scale problems generally can be described by partial differential equations (PDEs) or ordinary (ODEs). Analytical, semi-analytical and numerical analysis are commonly used for deriving the solutions of such PDEs/ODEs. Recently, a novel physics-informed neural network (PINN) solver has emerged as promising alternative to solve PINN resembles mesh-free method which leverages strong non-linear ability deep learning algorithms (e.g. networks) automatically search correct spatial-temporal responses constrained embedded This study comprehensively reviews current state including its principles forward inverse problems, baseline PINN, enhanced variants combined with special sampling strategies loss functions. shows an easier modelling process superior feasibility compared conventional methods. Meanwhile, limitations challenges applications solvers constitutive multi-scale/phase also discussed in terms convergence computational costs. exhibited huge potential geoengineering brings revolutionary way numerous domain problems.
Язык: Английский
Процитировано
14Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 433, С. 117474 - 117474
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
13Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 431, С. 117268 - 117268
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
12Thin-Walled Structures, Год журнала: 2025, Номер unknown, С. 113014 - 113014
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2