Data-driven reliability-oriented buildability analysis of 3D concrete printed curved wall DOI
Baixi Chen, Xiaoping Qian

Additive manufacturing, Год журнала: 2024, Номер 94, С. 104459 - 104459

Опубликована: Авг. 1, 2024

Язык: Английский

Comparative Study of Adaptive l1-Regularization for the Application of Structural Damage Diagnosis Under Seismic Excitation DOI Creative Commons
Weilin Wu,

Jun‐Fang Wang,

Jian‐Fu Lin

и другие.

Buildings, Год журнала: 2025, Номер 15(10), С. 1628 - 1628

Опубликована: Май 12, 2025

Damage identification plays a crucial role in the post-earthquake assessment and safety control of civil structures, which is usually an ill-posed inverse problem due to presence uncertainties lack measurement information. Regularization cutting-edge technique used address problems has been developed for decades. A comprehensive review comparison have first conducted identify limitations research gaps existing regularization methods structural damage detection. Thereafter, we identified development adaptive sparse (ASR) method, capable dynamically adjusting parameters sparsity according specific patterns or environmental conditions, as one emerging directions. Therefore, this paper systematically formulates summarizes theoretical framework ASR-based detection method engineering applications facilitate in-depth comparative analysis. To validate performance ASR diagnosis, numerical experiments are carried out on 2D 3D models under diverse scenarios subjected typical natural seismic excitations. These experimental investigations consider influences different parameter settings uncertainties. Subsequently, effects patterns, available modal information, solution algorithms analyzed discussed. The results investigation indicate that effective detection, showing satisfactory accuracy stability complex extreme conditions with limited number sensors insufficient Furthermore, integrating appropriate optimization can enhance its capability precisely isolated hybrid-distributed damage.

Язык: Английский

Процитировано

0

A Case Study of Performance Comparison Between Vacuum Preloading and Fill Surcharge for Soft Ground Improvement DOI
Kai Liu,

Hongtao He,

Dao-Yuan Tan

и другие.

International Journal of Geosynthetics and Ground Engineering, Год журнала: 2024, Номер 10(1)

Опубликована: Янв. 29, 2024

Язык: Английский

Процитировано

2

LithoSegNet: Regional attention-based deep fusion of multi-scale and cross-stage features for real-time lithology segmentation DOI
Zhenhao Xu, Heng Shi, Peng Lin

и другие.

International Journal of Rock Mechanics and Mining Sciences, Год журнала: 2024, Номер 180, С. 105814 - 105814

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

2

Advancing predictive accuracy of shallow landslide using strategic data augmentation DOI Creative Commons
Hongzhi Qiu, Xiaoqing Chen, Peng Feng

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

1

Data-driven reliability-oriented buildability analysis of 3D concrete printed curved wall DOI
Baixi Chen, Xiaoping Qian

Additive manufacturing, Год журнала: 2024, Номер 94, С. 104459 - 104459

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

1