Data-Driven Approach for Intelligent Classification of Tunnel Surrounding Rock Using Integrated Fractal and Machine Learning Methods DOI Creative Commons
Junjie Ma, Tianbin Li, Roohollah Shirani Faradonbeh

и другие.

Fractal and Fractional, Год журнала: 2024, Номер 8(12), С. 677 - 677

Опубликована: Ноя. 21, 2024

The degree of rock mass discontinuity is crucial for evaluating surrounding quality, yet its accurate and rapid measurement at construction sites remains challenging. This study utilizes fractal dimension to characterize the geometric characteristics develops a data-driven classification (SRC) model integrating machine learning algorithms. Initially, box-counting method was introduced calculate from excavation face image. Subsequently, parameters affecting quality were analyzed selected, including strength, discontinuity, condition, in-situ stress groundwater orientation. compiled database containing 246 railway highway tunnel cases based on these parameters. Then, four SRC models constructed, Bayesian optimization (BO) with support vector (SVM), random forest (RF), adaptive boosting (AdaBoost), gradient decision tree (GBDT) Evaluation indicators, 5-fold cross-validation, precision, recall, F1-score, micro-F1-score, macro-F1-score, accuracy, receiver operating characteristic curve, demonstrated GBDT-BO model’s superior robustness in generalization compared other models. Furthermore, additional validated intelligent approach’s practicality. Finally, synthetic minority over-sampling technique employed balance training set. Subsequent retraining evaluation confirmed that imbalanced dataset does not adversely affect performance. proposed shows promise predicting guiding dynamic support.

Язык: Английский

Predicting Rock Unconfined Compressive Strength Based on Tunnel Face Boreholes Measurement-While-Drilling Data DOI Creative Commons

Xuepeng Ling,

Mingnian Wang,

Wenhao Yi

и другие.

KSCE Journal of Civil Engineering, Год журнала: 2024, Номер 28(12), С. 5946 - 5962

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

3

A novel data-driven model for real-time prediction of static Young's modulus applying mud-logging data DOI
Shadfar Davoodi, Mohammad Mehrad, David A. Wood

и другие.

Earth Science Informatics, Год журнала: 2024, Номер unknown

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

3

Concatenating data-driven and reduced-physics models for smart production forecasting DOI
Oscar I.O. Ogali, Oyinkepreye D. Orodu

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A robust hybrid near-real-time model for prediction of drilling fluids filtration DOI
Shadfar Davoodi, Mohammed Al-Shargabi, David A. Wood

и другие.

Engineering With Computers, Год журнала: 2025, Номер unknown

Опубликована: Фев. 23, 2025

Язык: Английский

Процитировано

0

Predicting water-based drilling fluid filtrate volume in close to real time from routine fluid property measurements DOI Creative Commons
Shadfar Davoodi, Mohammed Ba Geri, David A. Wood

и другие.

Petroleum, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Comprehensive Prediction of Regional Natural Gas Hydrate Resources Based on Volume Method Evaluation DOI Open Access

Dongxun Jiang,

Zhaocheng Li

Sustainability, Год журнала: 2025, Номер 17(5), С. 2287 - 2287

Опубликована: Март 6, 2025

As an efficient clean backup energy source, natural gas hydrates have received high attention from countries around the world, and it is very important to establish models predict total amount of regional resources. In response complexity existing shortcomings current methods in resource exploration prediction, this article used volume method evaluation as basis for predictions. The location information obtained 14 wells research area were data, k-Nearest Neighbor interpolation (KNN interpolation) was estimate effective area. Through Kolmogorov–Smirnov test (KS test), we found that parameters hydrate resources roughly follow a Poisson distribution with coordinates. After using three-dimensional configuration, able characterize overall pattern quantity each well quantity. Finally, Monte Carlo algorithm genetic based on maximum possible within entire region. discussion, discussed reasons occurrence negative saturation verified accuracy algorithms analyzed applicability model different environments.

Язык: Английский

Процитировано

0

Extracting useful information from sparsely logged wellbores for improved rock typing of heterogeneous reservoir characterization using well-log attributes, feature influence and optimization DOI Creative Commons
David A. Wood

Petroleum Science, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Utilization of nano clay in the formulation of water based completion fluid for hydrocarbon containing reservoirs DOI

S. K. Nayak,

Rajat Jain,

Deepak Amban Mishra

и другие.

Petroleum Science and Technology, Год журнала: 2025, Номер unknown, С. 1 - 27

Опубликована: Март 24, 2025

This study successfully developed a novel water-based completion fluid with enhanced properties. The system, incorporating nano clay (1.0%–3.0%) along additives like polyanionic cellulose, pre-gelatinized starch, polyethylene glycol 200, sodium formate, and chloride, was compared to conventional hydroxyethyl cellulose-based fluid. Viscosity filtration properties were analyzed using viscometer filter press. core flooding test Berea sandstone at an overburden pressure of 1000 psi conducted understand the formation damage potential optimized system. zeta analysis indicated better PAC-based colloidal system stability (−22.2 mV) HEC-based (−4.7 mV). HPHT 90 °C 500 demonstrated lower loss (9 ml), highlighting clay's effectiveness in control. higher surface area volume ratio & its capability fit between other particles, obstructing flow through them, assist return permeability value 97.3% for tests on revealed good control property Moreover, it also observed that enhances geomechanical rock samples, indicating borehole

Язык: Английский

Процитировано

0

A review of intelligent technologies for underground construction and infrastructure maintenance DOI Creative Commons
Weiqiang Xie, Wenzhao Meng, Wei Wu

и другие.

Intelligent geoengineering., Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Classification of Rock Hardness at Tunnel Faces Based on a Drilling Parameter Cloud Map and Convolutional Neural Network DOI
Mingnian Wang,

Wenhao Yi,

Qinyong Xia

и другие.

Journal of Computing in Civil Engineering, Год журнала: 2025, Номер 39(4)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0