
Environmental and Sustainability Indicators, Год журнала: 2024, Номер unknown, С. 100575 - 100575
Опубликована: Дек. 1, 2024
Язык: Английский
Environmental and Sustainability Indicators, Год журнала: 2024, Номер unknown, С. 100575 - 100575
Опубликована: Дек. 1, 2024
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(22), С. 32350 - 32370
Опубликована: Апрель 23, 2024
Язык: Английский
Процитировано
12Ecological Indicators, Год журнала: 2024, Номер 166, С. 112420 - 112420
Опубликована: Авг. 2, 2024
Язык: Английский
Процитировано
4International Journal of Mining Reclamation and Environment, Год журнала: 2025, Номер unknown, С. 1 - 23
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
0Land, Год журнала: 2025, Номер 14(2), С. 325 - 325
Опубликована: Фев. 6, 2025
The uncontrolled expansion of mining activities has caused severe environmental impacts in semi-arid regions, endangering fragile ecosystems and water resources. This study aimed to propose a decision-making model identify land use cover changes the region Pernambuco, Brazil, by through spatiotemporal analysis using high-resolution images from PlanetScope satellite constellation. methodology consisted monitoring evaluating k-Nearest Neighbors (kNN) algorithm, spectral indices (Normalized Difference Vegetation Index (NDVI) Normalized Water (NDWI)), hydrological data, covering period 2018 2023. As result, 3.28% reduction vegetated areas 6.62% increase urban were identified over five years, suggesting landscape transformation, possibly influenced development activities. application kNN yielded an Overall Accuracy (OA) greater than 99% Kappa index 0.98, demonstrating effectiveness adopted methodology. However, challenges encountered distinguishing between constructions bare soil, with Jeffries–Matusita distance (JMD) indicating value below 0.34, while similarity vegetation highlights need for more comprehensive training data. results indicated that 2023, there was marked degradation significant built-up areas, especially near bodies. trend reflects intense human intervention reinforces public policies at mitigating these impacts, as well promoting recovery affected areas. approach proves potential remote sensing machine learning techniques effectively monitor changes, reinforcing strategies sustainable management
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104692 - 104692
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Soil and Tillage Research, Год журнала: 2025, Номер 252, С. 106591 - 106591
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0European Journal of Remote Sensing, Год журнала: 2024, Номер 57(1)
Опубликована: Авг. 12, 2024
Based on the objective evaluation of regional ecological quality (Urban Cluster in Mid-inner Zhejiang) by Remote Sensing based Ecological Index (RSEI), it was proposed to study spatial-temporal response urban built-up areas, impervious surface, land use and "production-living-ecological" space under settlement change quantitatively describe mechanism human activities' influence ecology. The results showed that: (1) From 1985 2020, RSEI Urban Zhejiang above 0.50 as a whole, showing trend first decreasing then increasing with slight decrease some parts. (2) perspective dominated level 2–3, gradually changing from 3 2. (3) accounting for more than 75.00% total area. (4) use, cropland, forestland, water construction were mainly 2–4, 3–4, 3–4 2–3. (5) space, production living 3, can deepen understanding impact development quality, avoid unbalanced situation blindly pursuing socio-economic while ignoring environment, which scientifically helps sustainable high-quality Zhejiang.
Язык: Английский
Процитировано
0Environmental and Sustainability Indicators, Год журнала: 2024, Номер unknown, С. 100575 - 100575
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0