Long-term impacts of agricultural greenhouse expansion on albedo, land surface temperature, and vegetation: Evidence from a typical province in China DOI Creative Commons
Fangxin Chen, Cong Ou, Yue Chen

и другие.

Environmental and Sustainability Indicators, Год журнала: 2024, Номер unknown, С. 100575 - 100575

Опубликована: Дек. 1, 2024

Язык: Английский

Application of a novel remote sensing ecological index (RSEI) based on geographically weighted principal component analysis for assessing the land surface ecological quality DOI
Jayanta Mondal, Tirthankar Basu, Arijit Das

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(22), С. 32350 - 32370

Опубликована: Апрель 23, 2024

Язык: Английский

Процитировано

12

Spatiotemporal analysis of ecological benefits coupling remote sensing ecological index and ecosystem services index DOI Creative Commons

Lingduo Kou,

Xuedong Wang, Haipeng Wang

и другие.

Ecological Indicators, Год журнала: 2024, Номер 166, С. 112420 - 112420

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

4

Monitoring and evaluation of ecological restoration in open-pit coal mine using remote sensing data based on a OM-RSEI model DOI
S. Wang, Chao Ma, Yingying Ma

и другие.

International Journal of Mining Reclamation and Environment, Год журнала: 2025, Номер unknown, С. 1 - 23

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

0

Land Cover Transformations in Mining-Influenced Areas Using PlanetScope Imagery, Spectral Indices, and Machine Learning: A Case Study in the Hinterlands de Pernambuco, Brazil DOI Creative Commons
Admilson da Penha Pachêco, João Agnaldo do Nascimento, Antonio M. Ruiz‐Armenteros

и другие.

Land, Год журнала: 2025, Номер 14(2), С. 325 - 325

Опубликована: Фев. 6, 2025

The uncontrolled expansion of mining activities has caused severe environmental impacts in semi-arid regions, endangering fragile ecosystems and water resources. This study aimed to propose a decision-making model identify land use cover changes the region Pernambuco, Brazil, by through spatiotemporal analysis using high-resolution images from PlanetScope satellite constellation. methodology consisted monitoring evaluating k-Nearest Neighbors (kNN) algorithm, spectral indices (Normalized Difference Vegetation Index (NDVI) Normalized Water (NDWI)), hydrological data, covering period 2018 2023. As result, 3.28% reduction vegetated areas 6.62% increase urban were identified over five years, suggesting landscape transformation, possibly influenced development activities. application kNN yielded an Overall Accuracy (OA) greater than 99% Kappa index 0.98, demonstrating effectiveness adopted methodology. However, challenges encountered distinguishing between constructions bare soil, with Jeffries–Matusita distance (JMD) indicating value below 0.34, while similarity vegetation highlights need for more comprehensive training data. results indicated that 2023, there was marked degradation significant built-up areas, especially near bodies. trend reflects intense human intervention reinforces public policies at mitigating these impacts, as well promoting recovery affected areas. approach proves potential remote sensing machine learning techniques effectively monitor changes, reinforcing strategies sustainable management

Язык: Английский

Процитировано

0

Geospatial Monitoring of Environmental Sustainability: A Remote Sensing-Based Approach for Assessing Mining-Induced Impacts in Eastern India DOI Creative Commons
Mayank Pandey, Rakesh Ranjan Thakur, Debabrata Nandi

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104692 - 104692

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Spatial analysis of soil quality in agricultural land using machine learning and environmental covariates: A case study of Khuzestan Province DOI
Kazem Rangzan, Zeinab Zaheri Abdehvand, Seyed Roohollah Mousavi

и другие.

Soil and Tillage Research, Год журнала: 2025, Номер 252, С. 106591 - 106591

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Spatial-temporal response of the regional ecological quality to urban settlement development DOI Creative Commons
Shiwen Zhang, Zhiqiang Zeng, Jianjun Tan

и другие.

European Journal of Remote Sensing, Год журнала: 2024, Номер 57(1)

Опубликована: Авг. 12, 2024

Based on the objective evaluation of regional ecological quality (Urban Cluster in Mid-inner Zhejiang) by Remote Sensing based Ecological Index (RSEI), it was proposed to study spatial-temporal response urban built-up areas, impervious surface, land use and "production-living-ecological" space under settlement change quantitatively describe mechanism human activities' influence ecology. The results showed that: (1) From 1985 2020, RSEI Urban Zhejiang above 0.50 as a whole, showing trend first decreasing then increasing with slight decrease some parts. (2) perspective dominated level 2–3, gradually changing from 3 2. (3) accounting for more than 75.00% total area. (4) use, cropland, forestland, water construction were mainly 2–4, 3–4, 3–4 2–3. (5) space, production living 3, can deepen understanding impact development quality, avoid unbalanced situation blindly pursuing socio-economic while ignoring environment, which scientifically helps sustainable high-quality Zhejiang.

Язык: Английский

Процитировано

0

Long-term impacts of agricultural greenhouse expansion on albedo, land surface temperature, and vegetation: Evidence from a typical province in China DOI Creative Commons
Fangxin Chen, Cong Ou, Yue Chen

и другие.

Environmental and Sustainability Indicators, Год журнала: 2024, Номер unknown, С. 100575 - 100575

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0