Outlier detection using flexible categorization and interrogative agendas DOI Creative Commons

Marcel Boersma,

Krishna Manoorkar, Alessandra Palmigiano

и другие.

Decision Support Systems, Год журнала: 2024, Номер 180, С. 114196 - 114196

Опубликована: Фев. 19, 2024

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), starting point present work that different ways to categorize a given set objects exist, which depend choice sets features used classify them, such may yield better or worse categorizations, relative task at hand. In their turn, (a priori) particular over another might be subjective express certain epistemic stance (e.g. interests, relevance, preferences) an agent group agents, namely, interrogative agenda. paper, we represent agendas as features, explore compare w.r.t. (agendas). We first develop simple unsupervised FCA-based algorithm for outlier detection uses categorizations arising from agendas. then supervised meta-learning learn suitable (fuzzy) categorization with weights masses. combine this obtain algorithm. show these algorithms perform par commonly datasets detection. These provide both local global explanations results.

Язык: Английский

M-FCCL: Memory-based concept-cognitive learning for dynamic fuzzy data classification and knowledge fusion DOI
Doudou Guo, Weihua Xu, Yuhua Qian

и другие.

Information Fusion, Год журнала: 2023, Номер 100, С. 101962 - 101962

Опубликована: Авг. 3, 2023

Язык: Английский

Процитировано

48

A Robust Multilabel Feature Selection Approach Based on Graph Structure Considering Fuzzy Dependency and Feature Interaction DOI
Tengyu Yin, Hongmei Chen, Zhong Yuan

и другие.

IEEE Transactions on Fuzzy Systems, Год журнала: 2023, Номер 31(12), С. 4516 - 4528

Опубликована: Июнь 23, 2023

The performance of multilabel learning depends heavily on the quality input features. A mass irrelevant and redundant features may seriously affect learning, feature selection is an effective technique to solve this problem. However, most methods mainly emphasize removing these useless features, exploration interaction ignored. Moreover, widespread existence real-world data with uncertainty, ambiguity, noise limits selection. To end, our work dedicated designing efficient robust scheme. First, distribution character analyzed generate fuzzy multineighborhood granules. By exploring classification information implied in under granularity structure, a $k$ -nearest neighbor rough set model constructed, concept dependency studied. Second, series uncertainty measures approximation spaces are studied analyze correlations pairs, including interactivity. Third, by investigating measure between label, modeled as complete weighted graph. Then, vertices assessed iteratively guide assignment weights. Finally, graph structure-based algorithm (GRMFS) designed. experiments conducted 15 datasets. results verify superior GRMFS compared nine representative methods.

Язык: Английский

Процитировано

45

Feature selection for classification with Spearman’s rank correlation coefficient-based self-information in divergence-based fuzzy rough sets DOI
Jiefang Jiang, Xianyong Zhang, Zhong Yuan

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 249, С. 123633 - 123633

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

28

Incremental Cognitive Learning Approach Based on Concept Reduction DOI

Taoju Liang,

Yidong Lin,

Jinjin Li

и другие.

International Journal of Approximate Reasoning, Год журнала: 2025, Номер unknown, С. 109359 - 109359

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Outlier Detection Using Three-Way Neighborhood Characteristic Regions and Corresponding Fusion Measurement DOI
Xianyong Zhang, Zhong Yuan, Duoqian Miao

и другие.

IEEE Transactions on Knowledge and Data Engineering, Год журнала: 2023, Номер 36(5), С. 2082 - 2095

Опубликована: Сен. 5, 2023

Outliers carry significant information to reflect an anomaly mechanism, so outlier detection facilitates relevant data mining. In terms of detection, the classical approaches from distances apply numerical rather than nominal data, while recent methods on basic rough sets deal with data. Aiming at wide numerical, nominal, and hybrid this paper investigates three-way neighborhood characteristic regions corresponding fusion measurement advance detection. First, are deepened via decision, they derive structures model boundaries, inner regions, regions. Second, motivate weight regarding all features, thus, a multiple factor emerges establish new method detection; furthermore, algorithm (called 3WNCROD) is designed comprehensively process mixed Finally, 3WNCROD experimentally validated, it generally outperforms 13 contrast algorithms perform better for

Язык: Английский

Процитировано

34

Semi-supervised multi-sensor information fusion tailored graph embedded low-rank tensor learning machine under extremely low labeled rate DOI
Haifeng Xu, Xu Wang, Jinfeng Huang

и другие.

Information Fusion, Год журнала: 2023, Номер 105, С. 102222 - 102222

Опубликована: Дек. 30, 2023

Язык: Английский

Процитировано

32

Online boxplot derived outlier detection DOI Creative Commons
Arefeh Mazarei, Ricardo Sousa, João Mendes‐Moreira

и другие.

International Journal of Data Science and Analytics, Год журнала: 2024, Номер unknown

Опубликована: Май 20, 2024

Abstract Outlier detection is a widely used technique for identifying anomalous or exceptional events across various contexts. It has proven to be valuable in applications like fault detection, fraud and real-time monitoring systems. Detecting outliers real time crucial several industries, such as financial quality control manufacturing processes. In the context of big data, amount data generated enormous, traditional batch mode methods are not practical since entire dataset available. The limited computational resources further compound this issue. Boxplot algorithm outlier that involves derivations. However, lack an incremental closed form statistical calculations during boxplot construction poses considerable challenges its application within realm data. We propose incremental/online version address these challenges. Our proposed based on approximation approach numerical integration histogram calculation cumulative distribution function. This independent dataset’s distribution, making it effective all types distributions, whether skewed not. To assess efficacy algorithm, we conducted tests using simulated datasets featuring varying degrees skewness. Additionally, applied real-world concerning software which posed challenge. experimental results underscored robust performance our highlighting comparable access dataset. online method, leveraging define whiskers, consistently achieved results. Notably, demonstrated efficiency, maintaining constant memory usage with minimal hyperparameter tuning.

Язык: Английский

Процитировано

11

Fuzzy granular anomaly detection using Markov random walk DOI
Chang Liu, Zhong Yuan, Baiyang Chen

и другие.

Information Sciences, Год журнала: 2023, Номер 646, С. 119400 - 119400

Опубликована: Июль 20, 2023

Язык: Английский

Процитировано

18

Detecting anomalies with granular-ball fuzzy rough sets DOI
Xinyu Su, Zhong Yuan, Baiyang Chen

и другие.

Information Sciences, Год журнала: 2024, Номер 678, С. 121016 - 121016

Опубликована: Июнь 12, 2024

Язык: Английский

Процитировано

8

Consistency-guided semi-supervised outlier detection in heterogeneous data using fuzzy rough sets DOI
Baiyang Chen, Zhong Yuan, Dezhong Peng

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 165, С. 112070 - 112070

Опубликована: Авг. 8, 2024

Язык: Английский

Процитировано

8