Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 140 - 162
Опубликована: Янв. 1, 2025
Язык: Английский
Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 140 - 162
Опубликована: Янв. 1, 2025
Язык: Английский
Information Fusion, Год журнала: 2023, Номер 100, С. 101962 - 101962
Опубликована: Авг. 3, 2023
Язык: Английский
Процитировано
48IEEE Transactions on Fuzzy Systems, Год журнала: 2023, Номер 31(12), С. 4516 - 4528
Опубликована: Июнь 23, 2023
The
performance
of
multilabel
learning
depends
heavily
on
the
quality
input
features.
A
mass
irrelevant
and
redundant
features
may
seriously
affect
learning,
feature
selection
is
an
effective
technique
to
solve
this
problem.
However,
most
methods
mainly
emphasize
removing
these
useless
features,
exploration
interaction
ignored.
Moreover,
widespread
existence
real-world
data
with
uncertainty,
ambiguity,
noise
limits
selection.
To
end,
our
work
dedicated
designing
efficient
robust
scheme.
First,
distribution
character
analyzed
generate
fuzzy
multineighborhood
granules.
By
exploring
classification
information
implied
in
under
granularity
structure,
a
Язык: Английский
Процитировано
46Expert Systems with Applications, Год журнала: 2024, Номер 249, С. 123633 - 123633
Опубликована: Март 11, 2024
Язык: Английский
Процитировано
29Information Fusion, Год журнала: 2023, Номер 105, С. 102222 - 102222
Опубликована: Дек. 30, 2023
Язык: Английский
Процитировано
35IEEE Transactions on Knowledge and Data Engineering, Год журнала: 2023, Номер 36(5), С. 2082 - 2095
Опубликована: Сен. 5, 2023
Outliers carry significant information to reflect an anomaly mechanism, so outlier detection facilitates relevant data mining. In terms of detection, the classical approaches from distances apply numerical rather than nominal data, while recent methods on basic rough sets deal with data. Aiming at wide numerical, nominal, and hybrid this paper investigates three-way neighborhood characteristic regions corresponding fusion measurement advance detection. First, are deepened via decision, they derive structures model boundaries, inner regions, regions. Second, motivate weight regarding all features, thus, a multiple factor emerges establish new method detection; furthermore, algorithm (called 3WNCROD) is designed comprehensively process mixed Finally, 3WNCROD experimentally validated, it generally outperforms 13 contrast algorithms perform better for
Язык: Английский
Процитировано
34International Journal of Data Science and Analytics, Год журнала: 2024, Номер unknown
Опубликована: Май 20, 2024
Abstract Outlier detection is a widely used technique for identifying anomalous or exceptional events across various contexts. It has proven to be valuable in applications like fault detection, fraud and real-time monitoring systems. Detecting outliers real time crucial several industries, such as financial quality control manufacturing processes. In the context of big data, amount data generated enormous, traditional batch mode methods are not practical since entire dataset available. The limited computational resources further compound this issue. Boxplot algorithm outlier that involves derivations. However, lack an incremental closed form statistical calculations during boxplot construction poses considerable challenges its application within realm data. We propose incremental/online version address these challenges. Our proposed based on approximation approach numerical integration histogram calculation cumulative distribution function. This independent dataset’s distribution, making it effective all types distributions, whether skewed not. To assess efficacy algorithm, we conducted tests using simulated datasets featuring varying degrees skewness. Additionally, applied real-world concerning software which posed challenge. experimental results underscored robust performance our highlighting comparable access dataset. online method, leveraging define whiskers, consistently achieved results. Notably, demonstrated efficiency, maintaining constant memory usage with minimal hyperparameter tuning.
Язык: Английский
Процитировано
13International Journal of Approximate Reasoning, Год журнала: 2025, Номер unknown, С. 109359 - 109359
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Information Sciences, Год журнала: 2023, Номер 646, С. 119400 - 119400
Опубликована: Июль 20, 2023
Язык: Английский
Процитировано
18Information Sciences, Год журнала: 2024, Номер 678, С. 121016 - 121016
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
8Applied Soft Computing, Год журнала: 2024, Номер 165, С. 112070 - 112070
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
8