Online Knowledge Distillation-Based Multiscale Threshold Denoising Networks for Fault Diagnosis of Transmission Systems DOI
Yadong Xu, Xiaoan Yan, Beibei Sun

и другие.

IEEE Transactions on Transportation Electrification, Год журнала: 2023, Номер 10(2), С. 4421 - 4431

Опубликована: Сен. 11, 2023

Convolutional neural networks (CNN) have developed rapidly in recent years, which has greatly promoted the advancement of intelligent fault diagnosis. Most currently available CNN-based diagnostic models are under presumption that acquired mechanical signals invulnerable to noise. However, transmission systems usually operate fluctuating conditions (e.g., variable speed and strong noise scenarios), making fault-related pulse information signal easily swamped by Therefore, it is challenging for these existing approaches achieve satisfactory results industrial scenarios. To deal with this problem, an online knowledge distillation-based multiscale threshold denoising network (OKD-MTDN) research work. The main innovations contributions work include: 1) introducing a novel convolutional module, called Multiscale Module (MCM), alongside Global Attention (GAM), extracting range discriminative features generated from signals; 2) designing multi-dilated module (MTDM) expand receptive field filter out interference features; 3) establishing distillation (OKD) algorithm improve generalization capability OKD-MTDN. hF-MS planetary gearbox dataset real-running high-speed rail utilized verify effectiveness proposed method. Experimental show OKD-MTDN can various nonstationary

Язык: Английский

Digital Twin Enabled Domain Adversarial Graph Networks for Bearing Fault Diagnosis DOI Creative Commons
Ke Feng, Yadong Xu, Yulin Wang

и другие.

IEEE Transactions on Industrial Cyber-Physical Systems, Год журнала: 2023, Номер 1, С. 113 - 122

Опубликована: Янв. 1, 2023

The fault diagnosis of rolling bearings is utmost importance in industrial applications to ensure mechanical systems' reliability, safety, and economic viability. However, conventional data-driven techniques mainly depend on a pre-existing dataset with complete failure modes knowledge serve as the training data, which may not be available or accessible some crucial scenarios. This can limit practicality these methodologies real-world applications. article addresses this issue by developing novel digital twin-enabled domain adversarial graph network (DT-DAGN). main contributions are follows: 1) development comprehensive accurate twin model for that includes dynamic simulation bearing's operational status using only its structural parameters severity/size obtain system's vibration response, 2) convolutional network-based transfer learning framework from simulated datasets measured datasets, enabling effective diagnostics limited knowledge. A series experiments applied validate efficacy developed methodology.

Язык: Английский

Процитировано

67

A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions DOI
Tianyu Gao, Jingli Yang, Qing Tang

и другие.

Information Fusion, Год журнала: 2024, Номер 106, С. 102278 - 102278

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

58

A systematic review of data fusion techniques for optimized structural health monitoring DOI Creative Commons
Sahar Hassani, Ulrike Dackermann, Mohsen Mousavi

и другие.

Information Fusion, Год журнала: 2023, Номер 103, С. 102136 - 102136

Опубликована: Ноя. 10, 2023

Advancements in structural health monitoring (SHM) techniques have spiked the past few decades due to rapid evolution of novel sensing and data transfer technologies. This development has facilitated simultaneous recording a wide range data, which could contain abundant damage-related features. Concurrently, age omnipresent started with massive amounts SHM collected from large-size heterogeneous sensor networks. The abundance information diverse sources needs be aggregated enable robust decision-making strategies. Data fusion is process integrating various produce more useful, accurate, reliable about system behavior. paper reviews recent developments applied systems. theoretical concepts, applications, benefits, limitations current methods challenges are presented, future trends discussed. Furthermore, set criteria proposed evaluate contents original review papers this field, road map provided discussing possible work.

Язык: Английский

Процитировано

57

Multi-sensor data fusion-enabled semi-supervised optimal temperature-guided PCL framework for machinery fault diagnosis DOI
Xingxing Jiang, Xuegang Li, Qian Wang

и другие.

Information Fusion, Год журнала: 2023, Номер 101, С. 102005 - 102005

Опубликована: Сен. 9, 2023

Язык: Английский

Процитировано

55

CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing DOI
Bin Zhou, Xinyu Li, Tianyuan Liu

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 59, С. 102333 - 102333

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

36

Digital twin-assisted dual transfer: a novel information-model adaptation method for rolling bearing fault diagnosis DOI
Zixian Li, Xiaoxi Ding,

Zhenzhen Song

и другие.

Information Fusion, Год журнала: 2024, Номер unknown, С. 102271 - 102271

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

23

Application of deep learning to fault diagnosis of rotating machineries DOI Open Access
Hao Su, Ling Xiang, Aijun Hu

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(4), С. 042003 - 042003

Опубликована: Янв. 12, 2024

Abstract Deep learning (DL) has attained remarkable achievements in diagnosing faults for rotary machineries. Capitalizing on the formidable capacity of DL, it potential to automate human labor and augment efficiency fault diagnosis machinery. These advantages have engendered escalating interest over past decade. Although recent reviews literature encapsulated utilization DL rotating machinery, they no longer encompass introduction novel methodologies emerging directions as continually evolve. Moreover, practical application, issues trajectories perpetually manifest, demanding a comprehensive exegesis. To rectify this lacuna, article amalgamates current research trends avant-garde while systematizing anterior techniques. The evolution extant status machinery were delineated, with intent providing orientation prospective research. Over bygone decade, archetypal theory empowered by directly establishing nexus between mechanical data conditions. In years, meta methods aimed at solving small sample scenarios large model transformers mining big features both received widespread attention development field equipment. excellent results been achieved these two directions, there is review summary yet, so necessary update Lastly, predicated survey developmental landscape, challenges orientations are presented.

Язык: Английский

Процитировано

17

IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions DOI
Sheng Li, Jinchen Ji, Yadong Xu

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 237, С. 109387 - 109387

Опубликована: Май 18, 2023

Язык: Английский

Процитировано

37

Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion DOI
Zhiguo Qu, Yang Tang, Ghulam Muhammad

и другие.

Information Fusion, Год журнала: 2023, Номер 98, С. 101824 - 101824

Опубликована: Апрель 30, 2023

Язык: Английский

Процитировано

33

A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems DOI
Yadong Xu, Jinchen Ji, Qing Ni

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2023, Номер 200, С. 110609 - 110609

Опубликована: Июль 29, 2023

Язык: Английский

Процитировано

30