Image super‐resolution via dynamic network DOI Creative Commons

Chunwei Tian,

Xuanyu Zhang, Qi Zhang

и другие.

CAAI Transactions on Intelligence Technology, Год журнала: 2024, Номер 9(4), С. 837 - 849

Опубликована: Апрель 8, 2024

Abstract Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution. However, obtained of these convolutional cannot completely express predicted high‐quality images complex scenes. A dynamic super‐resolution (DSRNet) is presented, which contains a residual enhancement block, wide feature refinement block and construction block. The composed enhanced architecture facilitate hierarchical features To enhance robustness model scenes, achieves learn more robust applicability an varying prevent interference components in utilises stacked accurately features. Also, learning operation embedded the long‐term dependency problem. Finally, responsible reconstructing images. Designed heterogeneous can not only richer structural information, but also be lightweight, suitable mobile digital devices. Experimental results show that our method competitive terms performance, recovering time complexity. code DSRNet at https://github.com/hellloxiaotian/DSRNet .

Язык: Английский

CVANet: Cascaded visual attention network for single image super-resolution DOI
Weidong Zhang, Wenyi Zhao, Jia Li

и другие.

Neural Networks, Год журнала: 2023, Номер 170, С. 622 - 634

Опубликована: Ноя. 24, 2023

Язык: Английский

Процитировано

72

Deep learning in food authenticity: Recent advances and future trends DOI

Zhuowen Deng,

Tao Wang,

Yun Zheng

и другие.

Trends in Food Science & Technology, Год журнала: 2024, Номер 144, С. 104344 - 104344

Опубликована: Янв. 20, 2024

Язык: Английский

Процитировано

51

Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image DOI

N. Nagarani,

R. Karthick,

M. Sandra Carmel Sophia

и другие.

Biomedical Signal Processing and Control, Год журнала: 2023, Номер 88, С. 105597 - 105597

Опубликована: Окт. 24, 2023

Язык: Английский

Процитировано

46

A novel Swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in MRI images DOI Creative Commons
İshak Paçal

International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер 15(9), С. 3579 - 3597

Опубликована: Март 5, 2024

Abstract Serious consequences due to brain tumors necessitate a timely and accurate diagnosis. However, obstacles such as suboptimal imaging quality, issues with data integrity, varying tumor types stages, potential errors in interpretation hinder the achievement of precise prompt diagnoses. The rapid identification plays pivotal role ensuring patient safety. Deep learning-based systems hold promise aiding radiologists make diagnoses swiftly accurately. In this study, we present an advanced deep learning approach based on Swin Transformer. proposed method introduces novel Hybrid Shifted Windows Multi-Head Self-Attention module (HSW-MSA) along rescaled model. This enhancement aims improve classification accuracy, reduce memory usage, simplify training complexity. Residual-based MLP (ResMLP) replaces traditional Transformer, thereby improving speed, parameter efficiency. We evaluate Proposed-Swin model publicly available MRI dataset four classes, using only test data. Model performance is enhanced through application transfer augmentation techniques for efficient robust training. achieves remarkable accuracy 99.92%, surpassing previous research models. underscores effectiveness Transformer HSW-MSA ResMLP improvements innovative diagnostic offering support diagnosis, ultimately outcomes reducing risks.

Язык: Английский

Процитировано

45

Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions DOI
Naveen Kumar Mahanti,

Shivashankar Sanganamoni,

Krishna Bahadur Chhetri

и другие.

Trends in Food Science & Technology, Год журнала: 2024, Номер 150, С. 104574 - 104574

Опубликована: Июнь 6, 2024

Язык: Английский

Процитировано

32

3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN DOI
Kang Li, Bin Tang, Jianjun Huang

и другие.

Computer Methods and Programs in Biomedicine, Год журнала: 2024, Номер 248, С. 108110 - 108110

Опубликована: Март 5, 2024

Язык: Английский

Процитировано

31

Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images DOI
Madhusudan G. Lanjewar, Kamini G. Panchbhai, L. B. Patle

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 169, С. 107914 - 107914

Опубликована: Янв. 4, 2024

Язык: Английский

Процитировано

25

A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images DOI Creative Commons
Md. Nahiduzzaman, Lway Faisal Abdulrazak, Hafsa Binte Kibria

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 10, 2025

Brain tumors present a significant global health challenge, and their early detection accurate classification are crucial for effective treatment strategies. This study presents novel approach combining lightweight parallel depthwise separable convolutional neural network (PDSCNN) hybrid ridge regression extreme learning machine (RRELM) accurately classifying four types of brain (glioma, meningioma, no tumor, pituitary) based on MRI images. The proposed enhances the visibility clarity tumor features in images by employing contrast-limited adaptive histogram equalization (CLAHE). A PDSCNN is then employed to extract relevant tumor-specific patterns while minimizing computational complexity. RRELM model proposed, enhancing traditional ELM improved performance. framework compared with various state-of-the-art models terms accuracy, parameters, layer sizes. achieved remarkable average precision, recall, accuracy values 99.35%, 99.30%, 99.22%, respectively, through five-fold cross-validation. PDSCNN-RRELM outperformed pseudoinverse (PELM) exhibited superior introduction led enhancements performance parameters sizes those models. Additionally, interpretability was demonstrated using Shapley Additive Explanations (SHAP), providing insights into decision-making process increasing confidence real-world diagnosis.

Язык: Английский

Процитировано

3

PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation DOI

Jiahui Zhong,

Wenhong Tian, Yuanlun Xie

и другие.

Computer Methods and Programs in Biomedicine, Год журнала: 2025, Номер unknown, С. 108611 - 108611

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

A step forward in food science, technology and industry using artificial intelligence DOI
Rezvan Esmaeily, Mohammad Amin Razavi, Seyed Hadi Razavi

и другие.

Trends in Food Science & Technology, Год журнала: 2023, Номер 143, С. 104286 - 104286

Опубликована: Дек. 4, 2023

Язык: Английский

Процитировано

34