Information Processing & Management, Год журнала: 2025, Номер 62(4), С. 104095 - 104095
Опубликована: Фев. 11, 2025
Язык: Английский
Information Processing & Management, Год журнала: 2025, Номер 62(4), С. 104095 - 104095
Опубликована: Фев. 11, 2025
Язык: Английский
International Journal of Approximate Reasoning, Год журнала: 2024, Номер 174, С. 109272 - 109272
Опубликована: Авг. 23, 2024
Язык: Английский
Процитировано
3IEEE Transactions on Cybernetics, Год журнала: 2024, Номер 55(2), С. 740 - 752
Опубликована: Дек. 3, 2024
Multigranularity data analysis has recently become an active research topic in the intelligent computing and mining fields. Feature selection via multigranularity is effective tool for characterizing hierarchical enhancing accuracy of results. Although method been widely adopted feature selection, existing studies still present one prevalent disadvantage: mostly focuses on information presented at a single granularity while ignoring structure data, which contrary to nature multigranularity. Hence, this article proposes with zentropy uncertainty measure efficient robust selection. Specifically, consistent degree first introduced obtain optimal combinations establish neighborhood model processing. Then, novel developed by integrating information, namely zentropy-based measure. Considering its among measures, two important measures are further designed applied Extensive experiments demonstrate that proposed can achieve better robustness classification performance than other state-of-the-art methods.
Язык: Английский
Процитировано
3Applied Intelligence, Год журнала: 2025, Номер 55(4)
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
0IET Image Processing, Год журнала: 2025, Номер 19(1)
Опубликована: Янв. 1, 2025
Abstract Processing facial images with varying poses is a significant challenge. Most existing face frontalization methods rely on heavy architectures that struggle small datasets and produce low‐quality images. Additionally, although video frames provide richer information, these typically use single due to the lack of suitable multi‐image datasets. To address issues, parameter‐efficient framework for high‐quality in both multi‐frame scenarios proposed. First, high‐quality, diverse dataset created tasks. Second, novel single‐image method introduced by combining GAN inversion transfer learning. This approach reduces number trainable parameters over 91% compared while achieving far more photorealistic results than GAN‐based methods. Finally, this extended sequences images, using attention mechanisms merge information from multiple frames. artefacts like eye blinks improves reconstruction quality. Experiments demonstrate outperforms pSp, state‐of‐the‐art method, 0.15 LPIPS improvement 0.10 increase ID similarity. further identity preservation 0.87, showcasing its effectiveness frontal‐view reconstructions.
Язык: Английский
Процитировано
0Information Processing & Management, Год журнала: 2025, Номер 62(4), С. 104095 - 104095
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
0