Hot Topics and Frontier Evolution of Formation Control Research in Multiple Robots DOI Creative Commons
Yong Xu, Malathy Batumalay, Choon Kit Chan

и другие.

Journal of Robotics, Год журнала: 2025, Номер 2025(1)

Опубликована: Янв. 1, 2025

This research conducts an extensive bibliometric analysis of the literature on formation control multiple robots. The main objective is to offer a comprehensive present condition and future potential this area. To accomplish this, employs methodology examine current trends forecast developments. gathered total 1656 journal articles from Web Science (WoS) database. utilizes bibliographic coupling keyword co‐occurrence analyses identify influential publications, delineate knowledge structure, trends. yielded four separate clusters, while revealed clusters. Although importance in robots growing, more scholarly effort necessary fully understand academic panorama. article provides significant insights into rapidly expanding field Furthermore, it offers thorough examination diverse emphasizes its for ongoing advancement.

Язык: Английский

UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility DOI
Yonglin Tian, Fei Lin, Yuqing Li

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103158 - 103158

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Improving Fire and Smoke Detection with You Only Look Once 11 and Multi-Scale Convolutional Attention DOI Creative Commons
Yuxuan Li,

Lisha Nie,

Fangrong Zhou

и другие.

Fire, Год журнала: 2025, Номер 8(5), С. 165 - 165

Опубликована: Апрель 22, 2025

Fires pose significant threats to human safety, health, and property. Traditional methods, with their inefficient use of features, struggle meet the demands fire detection. You Only Look Once (YOLO), as an efficient deep learning object detection framework, can rapidly locate identify smoke objects in visual images. However, research utilizing latest YOLO11 for remains sparse, addressing scale variability well practicality models continues be a focus. This study first compares classic YOLO series analyze its advantages tasks. Then, tackle challenges model practicality, we propose Multi-Scale Convolutional Attention (MSCA) mechanism, integrating it into create YOLO11s-MSCA. Experimental results show that outperforms other by balancing accuracy, speed, practicality. The YOLO11s-MSCA performs exceptionally on D-Fire dataset, improving overall accuracy 2.6% recognition 2.8%. demonstrates stronger ability small objects. Although remain handling occluded targets complex backgrounds, exhibits strong robustness generalization capabilities, maintaining performance complicated environments.

Язык: Английский

Процитировано

0

DMPNet: A Lightweight Remote Sensing Forest Wildfire Detection Network Based on Multi-Scale Heterogeneous Attention Mechanism and Dynamic Scaling Fusion Strategy DOI
Y.H. Long, Hongwei Ding,

Yuanjing Zhu

и другие.

Digital Signal Processing, Год журнала: 2025, Номер unknown, С. 105252 - 105252

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Conceptual design of a wildfire emergency response system empowered by swarms of unmanned aerial vehicles DOI Creative Commons
Mohammad Tavakol Sadrabadi, J. Peiró, Mauro S. Innocente

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105493 - 105493

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Hot Topics and Frontier Evolution of Formation Control Research in Multiple Robots DOI Creative Commons
Yong Xu, Malathy Batumalay, Choon Kit Chan

и другие.

Journal of Robotics, Год журнала: 2025, Номер 2025(1)

Опубликована: Янв. 1, 2025

This research conducts an extensive bibliometric analysis of the literature on formation control multiple robots. The main objective is to offer a comprehensive present condition and future potential this area. To accomplish this, employs methodology examine current trends forecast developments. gathered total 1656 journal articles from Web Science (WoS) database. utilizes bibliographic coupling keyword co‐occurrence analyses identify influential publications, delineate knowledge structure, trends. yielded four separate clusters, while revealed clusters. Although importance in robots growing, more scholarly effort necessary fully understand academic panorama. article provides significant insights into rapidly expanding field Furthermore, it offers thorough examination diverse emphasizes its for ongoing advancement.

Язык: Английский

Процитировано

0