Semantic information guided diffusion posterior sampling for remote sensing image fusion DOI Creative Commons
Chenlin Zhang,

Yajun Chang,

Yuhang Wu

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Ноя. 8, 2024

The task of image fusion for optical images and SAR is to integrate valuable information from source images. Recently, owing powerful generation, diffusion models, e.g., denoising probabilistic model score-based model, are flourished in processing, there some effective attempts by scholars' progressive explorations. However, the models suffer inevitable speckle that seriously shelters same location image. Besides, these methods pixel-level features without high-level tasks, target detection classification, which leads fused insufficient their application accuracies low, tasks. To tackle hurdles, we propose semantic guided posterior sampling fusion. Firstly, employ SAR-BM3D as preprocessing despeckle. Then, established with fidelity, regularization guidance term. first two terms obtained variational method via inference first-order stochastic optimization. last term served cross entropy loss between annotation classification result FLCNet design. Finally, experiments validate feasibility superiority proposed on WHU-OPT-SAR dataset DDHRNet dataset.

Язык: Английский

Inter-frame feature fusion enhanced spatio-temporal consistent video inpainting with sample-based techniques and adaptive local search DOI
Ruyi Han,

Shenghai Liao,

Shujun Fu

и другие.

Journal of Computational and Applied Mathematics, Год журнала: 2025, Номер unknown, С. 116523 - 116523

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

SSDFusion: A scene-semantic decomposition approach for visible and infrared image fusion DOI
Rui Ming,

Yuze Xiao,

Xinyu Liu

и другие.

Pattern Recognition, Год журнала: 2025, Номер unknown, С. 111457 - 111457

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

DGFD: A dual-graph convolutional network for image fusion and low-light object detection DOI
Xiaoxuan Chen, Shuwen Xu,

Shaohai Hu

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103025 - 103025

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

HDRT: A large-scale dataset for infrared-guided HDR imaging DOI
Jingchao Peng, Thomas Bashford‐Rogers, Francesco Banterle

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103109 - 103109

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

CLIPFusion: Infrared and visible image fusion network based on image-text large model and adaptive learning DOI
Chuanyun Wang, Chuanyun Wang, Tian Wang

и другие.

Displays, Год журнала: 2025, Номер unknown, С. 103042 - 103042

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A new method for fusing infrared and visible images in low-light environments based on visual perception and attention mechanism DOI

Zhen Pei,

Jinbo Lu, Qian Yu

и другие.

Optics and Lasers in Engineering, Год журнала: 2025, Номер 186, С. 108800 - 108800

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

Enhancing multimodal medical image analysis with Slice-Fusion: A novel fusion approach to address modality imbalance DOI
Awais Ahmed, Xiaoyang Zeng, Rui Xi

и другие.

Computer Methods and Programs in Biomedicine, Год журнала: 2025, Номер 261, С. 108615 - 108615

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

0

MARCFusion: adaptive residual cross-domain fusion network for medical image fusion DOI
Haozhe Tang, Lei Yu,

Yu Shao

и другие.

Multimedia Systems, Год журнала: 2025, Номер 31(2)

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

0

MaeFuse: Transferring Omni Features with Pretrained Masked Autoencoders for Infrared and Visible Image Fusion via Guided Training DOI
Jiayang Li, Junjun Jiang, Pengwei Liang

и другие.

IEEE Transactions on Image Processing, Год журнала: 2025, Номер 34, С. 1340 - 1353

Опубликована: Янв. 1, 2025

In this paper, we introduce MaeFuse, a novel autoencoder model designed for Infrared and Visible Image Fusion (IVIF). The existing approaches image fusion often rely on training combined with downstream tasks to obtain high-level visual information, which is effective in emphasizing target objects delivering impressive results quality task-specific applications. Instead of being driven by tasks, our called MaeFuse utilizes pretrained encoder from Masked Autoencoders (MAE), facilities the omni features extraction low-level reconstruction vision perception friendly low cost. order eliminate domain gap different modal block effect caused MAE encoder, further develop guided strategy. This strategy meticulously crafted ensure that layer seamlessly adjusts feature space gradually enhancing performance. proposed method can facilitate comprehensive integration vectors both infrared visible modalities, thus preserving rich details inherent each modal. not only introduces perspective realm techniques but also stands out performance across various public datasets. code available at https://github.com/Henry-Lee-real/MaeFuse.

Язык: Английский

Процитировано

0

A dual-stream feature decomposition network with weight transformation for multi-modality image fusion DOI Creative Commons

Tianqing Hu,

Xiaofei Nan, Xiabing Zhou

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 3, 2025

As an image enhancement technology, multi-modal fusion primarily aims to retain salient information from multi-source pairs in a single image, generating imaging that contains complementary features and can facilitate downstream visual tasks. However, dual-stream methods with convolutional neural networks (CNNs) as backbone predominantly have limited receptive fields, whereas Transformers are time-consuming, both lack the exploration of cross-domain information. This study proposes innovative model designed for images, encompassing infrared visible images medical images. Our leverages strengths CNNs various feature types effectively, addressing short- long-range learning well extraction low- high-frequency features. First, our shared encoder is constructed based on learning, including intra-modal block, inter-modal novel alignment block handles slight misalignments. private extracting employs architecture CNNs, which includes dual-domain selection mechanism invertible network. Second, we develop cross-attention-based Swin Transformer explore In particular, introduce weight transformation embedded into enhance efficiency. Third, unified loss function incorporating dynamic weighting factor formulated capture inherent commonalities A comprehensive qualitative quantitative analysis object detection experimental results demonstrates proposed method effectively preserves thermal targets background texture details, surpassing state-of-the-art alternatives terms achieving high-quality improving performance subsequent

Язык: Английский

Процитировано

0