TVGeAN: Tensor Visibility Graph-Enhanced Attention Network for Versatile Multivariant Time Series Learning Tasks DOI Creative Commons
Mohammed Baz

Mathematics, Год журнала: 2024, Номер 12(21), С. 3320 - 3320

Опубликована: Окт. 23, 2024

This paper introduces Tensor Visibility Graph-enhanced Attention Networks (TVGeAN), a novel graph autoencoder model specifically designed for MTS learning tasks. The underlying approach of TVGeAN is to combine the power complex networks in representing time series as graphs with strengths Graph Neural (GNNs) from data. consists two new main components: TVG which extend capabilities visibility algorithms MTSs by converting them into weighted temporal where both nodes and edges are tensors. Each node represents observations at particular time, while weights defined based on angle algorithm. second component proposed GeAN, attention mechanism developed seamlessly integrate interactions represented core process. GeAN achieves this using outer product quantify pairwise fine-grained level bilinear effectively distil knowledge interwoven these representations. From an architectural point view, builds complemented sparse variational units. unit used promote inductive TVGeAN, endow generative capabilities. performance extensively evaluated against four widely cited benchmarks supervised unsupervised results evaluations show high various In particular, can achieve average root mean square error 6.8 C-MPASS dataset (i.e., regression tasks) precision close one SMD, MSL, SMAP datasets anomaly detection tasks), better than most published works.

Язык: Английский

Interpretable degradation tensor modeling through multi-scale and multi-level time-frequency feature fusion for machine health monitoring DOI
Tongtong Yan,

Xueqi Xing,

Dong Wang

и другие.

Information Fusion, Год журнала: 2025, Номер 117, С. 102935 - 102935

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

3

DCAGGCN: A novel method for remaining useful life prediction of bearings DOI
Deqiang He, Jiayang Zhao, Zhenzhen Jin

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110978 - 110978

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

A survey on graph neural networks for remaining useful life prediction: Methodologies, evaluation and future trends DOI
Yucheng Wang, Min Wu, Dongwei Li

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 229, С. 112449 - 112449

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

1

A dynamic spatio-temporal graph neural network with global and local perception for remaining useful life prediction DOI
Qiang Zhang, Jun Liu,

Kaixuan Xie

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127707 - 127707

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

Multi-view fully connected graph to fuse multi-sensor signals for mechanical equipment remaining useful life prediction DOI
Jinxin Wu, Deqiang He, Zhenzhen Jin

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 1029 - 1052

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

1

Multi-stage degradation feature with dynamic feedback mechanism for remaining useful life prediction DOI
Chaoge Wang,

Jiechen Sun,

Xiangyi Meng

и другие.

Nondestructive Testing And Evaluation, Год журнала: 2025, Номер unknown, С. 1 - 34

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

0

Anomaly detection for microservice system via augmented multimodal data and hybrid graph representations DOI
Peipeng Wang, Xiuguo Zhang, Zhiying Cao

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103017 - 103017

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Reconstruction method of aircraft wing stress field under limited measurement points via multi-source heterogeneous information fusion DOI
Lin Lin,

Ling-Yu Yue,

Dan Liu

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103387 - 103387

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0

VSC-Net: Versatile spatiotemporal convolution network with multi-sensor signals for remaining useful life prediction of mechanical systems DOI
Zhan Gao,

Yumeng Lei,

Jun Wu

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103288 - 103288

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A framework for technology opportunity discovery using GAT-based link prediction and network analysis DOI

Zhi-Xing Chang,

Wei Guo, Hongyu Shao

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 66, С. 103498 - 103498

Опубликована: Май 27, 2025

Язык: Английский

Процитировано

0