AI-Driven Diagnostics and Imaging: Transforming Early Detection and Precision in Healthcare DOI Open Access

Sheela Sitaraman

International Journal of Scientific Research in Computer Science Engineering and Information Technology, Год журнала: 2024, Номер 10(6), С. 1258 - 1267

Опубликована: Дек. 5, 2024

Artificial intelligence is revolutionizing medical imaging and diagnostics, marking a transformative era in healthcare delivery. This comprehensive article explores the evolution from early computer-aided diagnosis systems to sophisticated deep-learning architectures, examining their impact across radiology, pathology, clinical workflows. The covers breakthrough technologies, including vision transformers, multi-modal integration, explainable AI frameworks, highlighting contributions improved diagnostic accuracy efficiency. encompasses benefits of disease detection, workflow optimization, cost reduction while addressing crucial challenges regulatory compliance, ethical considerations, data privacy. Looking ahead, review examines emerging trends federated learning, infrastructure requirements, economic implications implementation settings, providing insights into future landscape AI-driven imaging.

Язык: Английский

HealthAIoT: AIoT-driven smart healthcare system for sustainable cloud computing environments DOI

Han Wang,

Kumar Ankur Anurag,

Amira Rayane Benamer

и другие.

Internet of Things, Год журнала: 2025, Номер unknown, С. 101555 - 101555

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

The Evolution and Architecture of Multimodal AI Systems DOI Open Access
Bibekananda Nayak

International Journal of Scientific Research in Computer Science Engineering and Information Technology, Год журнала: 2025, Номер 11(1), С. 1007 - 1017

Опубликована: Янв. 20, 2025

This technical article explores the evolution, architecture, and implementation challenges of multimodal AI systems, which represent a significant advancement in artificial intelligence. The how these systems integrate multiple input modalities to achieve comprehensive understanding analysis capabilities, mirroring human cognitive processes. Through detailed system architectures, performance metrics, strategies, we investigate current state across various applications, from virtual assistants healthcare analytics. covers core components, data synchronization challenges, resource optimization techniques, future directions field, providing insights into both theoretical frameworks practical implementations.

Язык: Английский

Процитировано

0

Forensic sex classification by convolutional neural network approach by VGG16 model: accuracy, precision and sensitivity DOI
Cristiana Palmela Pereira, M. R. M. MAZULLO CORREIA, Diana Augusto

и другие.

International Journal of Legal Medicine, Год журнала: 2025, Номер unknown

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

EHR-based prediction modelling meets multimodal deep learning: A systematic review of structured and textual data fusion methods DOI
Ariel Soares Teles, Ivan Rodrigues de Moura, Francisco Silva

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 102981 - 102981

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

The Evolution of Artificial Intelligence in Nuclear Medicine DOI Creative Commons
Leonor Lopes, Alejandro López-Montes, Yizhou Chen

и другие.

Seminars in Nuclear Medicine, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Nuclear medicine has continuously evolved since its beginnings, constantly improving the diagnosis and treatment of various diseases. The integration artificial intelligence (AI) is one latest revolutionizing chapters, promising significant advancements in diagnosis, prognosis, segmentation, image quality enhancement, theranostics. Early AI applications nuclear focused on diagnostic accuracy, leveraging machine learning algorithms for disease classification outcome prediction. Advances deep learning, including convolutional more recently transformer-based neural networks, have further enabled precise segmentation as well low-dose imaging, patient-specific dosimetry personalized treatment. Generative AI, driven by large language models diffusion techniques, now allowing process, interpretation, generation complex medical images. Despite these achievements, challenges such data scarcity, heterogeneity, ethical concerns remain barriers to clinical translation. Addressing issues through interdisciplinary collaboration will pave way a broader adoption medicine, potentially enhancing patient care optimizing therapeutic outcomes.

Язык: Английский

Процитировано

0

Harmonizing foundation models in healthcare: A comprehensive survey of their roles, relationships, and impact in artificial intelligence’s advancing terrain DOI Creative Commons
Mohan Timilsina, Samuele Buosi, Muhammad Asif Razzaq

и другие.

Computers in Biology and Medicine, Год журнала: 2025, Номер 189, С. 109925 - 109925

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Multimodal learning-based speech enhancement and separation, recent innovations, new horizons, challenges and real-world applications DOI
Rizwan Ullah, Shaohui Zhang, Muhammad Asif

и другие.

Computers in Biology and Medicine, Год журнала: 2025, Номер 190, С. 110082 - 110082

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

0

A review of the Applications, Benefits, and challenges of Generative AI for sustainable toxicology DOI Creative Commons
Furqan Alam,

Tahani Saleh Mohammed Alnazzawi,

Rashid Mehmood

и другие.

Current Research in Toxicology, Год журнала: 2025, Номер unknown, С. 100232 - 100232

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A comprehensive survey of large language models and multimodal large language models in medicine DOI
Hanguang Xiao,

Feizhong Zhou,

Xingyue Liu

и другие.

Information Fusion, Год журнала: 2024, Номер unknown, С. 102888 - 102888

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

3

A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction DOI Creative Commons
Lei Wang, Jiajun Wang,

Dawei Tong

и другие.

Buildings, Год журнала: 2024, Номер 14(11), С. 3675 - 3675

Опубликована: Ноя. 19, 2024

The accurate prediction of dam deformation is essential for ensuring safe and efficient operation risk management. However, the nonlinear relationships between time-varying environmental factors pose significant challenges, often limiting accuracy conventional deep learning models. To address these issues, this study aimed to improve predictive interpretability in modeling by proposing a novel LSTM seq2seq model that integrates chaos-based arithmetic optimization algorithm (AOA) an attention mechanism. AOA optimizes model’s learnable parameters utilizing distribution patterns four mathematical operators, further enhanced logistic cubic mappings, avoid local optima. mechanism, placed encoder decoder networks, dynamically quantifies impact influencing on deformation, enabling focus most relevant information. This approach was applied earth-rock dam, achieving superior performance with RMSE, MAE, MAPE values 0.695 mm, 0.301 0.156%, respectively, outperforming machine weights provide insights into contributions each factor, enhancing interpretability. holds potential real-time monitoring maintenance, contributing safety resilience infrastructure.

Язык: Английский

Процитировано

2