Multi-attribute decision-making based on similarity measure between picture fuzzy sets and the MARCOS method
Information Sciences,
Год журнала:
2023,
Номер
658, С. 119990 - 119990
Опубликована: Дек. 22, 2023
Язык: Английский
Multiattribute decision making based on q-rung orthopair fuzzy Yager prioritized weighted arithmetic aggregation operator of q-rung orthopair fuzzy numbers
Information Sciences,
Год журнала:
2023,
Номер
657, С. 119984 - 119984
Опубликована: Дек. 12, 2023
Язык: Английский
Blending traditional and novel techniques: Hybrid type-1 fuzzy functions for forecasting
Engineering Applications of Artificial Intelligence,
Год журнала:
2025,
Номер
148, С. 110445 - 110445
Опубликована: Март 6, 2025
Язык: Английский
PIFS, ARC and Markov model based hybrid method for fuzzy time series forecasting
Expert Systems with Applications,
Год журнала:
2025,
Номер
unknown, С. 127510 - 127510
Опубликована: Апрель 1, 2025
Язык: Английский
Multiple attribute decision making based on score function of q-connection numbers, q-CNPWG aggregation operator of q-connection numbers, and set pair analysis theory in the environments of q-rung orthopair fuzzy numbers
Information Sciences,
Год журнала:
2024,
Номер
678, С. 120985 - 120985
Опубликована: Июнь 12, 2024
Язык: Английский
A new ensemble intuitionistic fuzzy-deep forecasting model: Consolidation of the IFRFs-bENR with LSTM
Information Sciences,
Год журнала:
2024,
Номер
679, С. 121007 - 121007
Опубликована: Июнь 22, 2024
Язык: Английский
A hybrid deep recurrent artificial neural network with a simple exponential smoothing feedback mechanism
Information Sciences,
Год журнала:
2024,
Номер
686, С. 121356 - 121356
Опубликована: Авг. 23, 2024
Язык: Английский
A Novel Approach for Optimal Cluster Identification and N-Order Hesitation Based Time Series Forecasting
SN Computer Science,
Год журнала:
2024,
Номер
5(7)
Опубликована: Сен. 11, 2024
Язык: Английский
An Improved Type-1 Fuzzy Regression Function for COVID-19 Cases Prediction
Rana Aziz Yousif Almuttalibi,
Aref Jeribi,
Saad Naji Al-Azzawi
и другие.
International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,
Год журнала:
2024,
Номер
32(06), С. 833 - 887
Опубликована: Сен. 1, 2024
The
deficiency
in
data
collection
and
reporting
has
led
to
the
emergence
of
uncertainty
pandemic
process.
These
matters
cause
that
traditional
statistical
mathematical
models
have
been
functionless
unreliable
this
issue.
In
respect,
study
presents
an
ensemble
prediction
model
with
innovative
contemporary
properties
COVID-19
cases
UK
USA
inclusively
throughout
whole
proposed
is
composed
assembly
Type-1
fuzzy
regression
functions
elastic
net
regularization
(E-T1FRF)
radial
basis
function
neural
networks
(RBFNNs).
Thus,
can
successfully
modelling
perspective
T1FRF
also
thoroughly
adapt
patterns
thanks
flexible
ability
RBFNN
based
on
data.
With
model,
entire
process
from
beginning
March
2020
end
June
2022
were
modelled
predicted
for
23
different
periods
one-month
steps.
produced
predictions
MAPE
values
below
3%
all
but
except
three
periods.
Also,
average
obtained
at
around
2%
only
1.5%
US.
results,
a
reasonable
level
error,
demonstrated
practicality
usage
community
other
countries
provided
valuable
information
future
action.
Язык: Английский