International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
Computational Materials Science, Год журнала: 2025, Номер 249, С. 113668 - 113668
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
1Applied Intelligence, Год журнала: 2025, Номер 55(4)
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Март 15, 2025
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2025, Номер unknown, С. 122945 - 122945
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Symmetry, Год журнала: 2024, Номер 16(7), С. 866 - 866
Опубликована: Июль 8, 2024
The input layer, hidden and output layer are three models of neural processors that comprise feedforward networks. In this paper, an enhanced tunicate swarm algorithm based on a differential sequencing alteration operator (ETSA) with symmetric cooperative swarms is presented to train objective accomplish minimum classification errors the most appropriate network layout by regulating layers’ connection weights neurons’ deviation thresholds according transmission error between anticipated authentic output. TSA mimics jet motorization scavenging mitigate directional collisions maintain greatest solution customized regional. However, exhibits disadvantages low computational accuracy, slow convergence speed, easy search stagnation. has adaptable localized extraction screening broaden identification scope, enrich population creativity, expedite computation productivity, avoid ETSA integrates exploration exploitation stagnation, which sufficient stability flexibility acquire finest solution. was distinguished from ETTAO, EPSA, SABO, SAO, EWWPA, YDSE, monitoring seventeen alternative datasets. experimental results confirm maintains profound sustainability durability exaggerated convergence, locate acceptable error, equalize prospection yield faster superior calculation greater categorization accuracy.
Язык: Английский
Процитировано
2Energies, Год журнала: 2024, Номер 18(1), С. 16 - 16
Опубликована: Дек. 24, 2024
The increasing demand for sustainable energy has spurred interest in biofuels as a renewable alternative to fossil fuels. Biomass gasification and pyrolysis are two prominent thermochemical conversion processes biofuel production. While these effective, they often influenced by complex, nonlinear, uncertain factors, making optimization prediction challenging. This study highlights the application of fuzzy neural networks (FNNs)—a hybrid approach that integrates strengths logic networks—as novel tool address challenges. Unlike traditional methods, FNNs offer enhanced adaptability accuracy modeling nonlinear systems, them uniquely suited biomass processes. review not only ability optimize predict performance but also identifies their role advancing decision-making frameworks. Key challenges, benefits, future research opportunities explored, showcasing transformative potential
Язык: Английский
Процитировано
1Information Sciences, Год журнала: 2024, Номер 680, С. 121174 - 121174
Опубликована: Июль 11, 2024
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2024, Номер 374, С. 124039 - 124039
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2024, Номер 167, С. 112251 - 112251
Опубликована: Сен. 17, 2024
Язык: Английский
Процитировано
0International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
0