Fuzzy Neural Network Applications in Biomass Gasification and Pyrolysis for Biofuel Production: A Review DOI Creative Commons
V V Bukhtoyarov, В С Тынченко, K A Bashmur

и другие.

Energies, Год журнала: 2024, Номер 18(1), С. 16 - 16

Опубликована: Дек. 24, 2024

The increasing demand for sustainable energy has spurred interest in biofuels as a renewable alternative to fossil fuels. Biomass gasification and pyrolysis are two prominent thermochemical conversion processes biofuel production. While these effective, they often influenced by complex, nonlinear, uncertain factors, making optimization prediction challenging. This study highlights the application of fuzzy neural networks (FNNs)—a hybrid approach that integrates strengths logic networks—as novel tool address challenges. Unlike traditional methods, FNNs offer enhanced adaptability accuracy modeling nonlinear systems, them uniquely suited biomass processes. review not only ability optimize predict performance but also identifies their role advancing decision-making frameworks. Key challenges, benefits, future research opportunities explored, showcasing transformative potential

Язык: Английский

Battery SOC estimation with physics-constrained BiLSTM under different external pressures and temperatures DOI
Longxing Wu, Xinyuan Wei,

Chunsong Lin

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 117, С. 116205 - 116205

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

2

Intelligent design and evaluation of tunnel support structure systems DOI
Ziquan Chen, Chuan He, Zihan Zhou

и другие.

Automation in Construction, Год журнала: 2025, Номер 175, С. 106215 - 106215

Опубликована: Апрель 18, 2025

Процитировано

0

DMAM: Difficulty-enhanced multi-view attention-based model for knowledge tracing DOI

Xiaohan Jiang,

Bo Yang, Wei Liu

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113736 - 113736

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Correlation based deep neuro-fuzzy Hammerstein type wind power forecasting model considering asymmetric error characteristics DOI
Jianfang Li, Jia Li, Wei Yang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 157, С. 111200 - 111200

Опубликована: Июнь 4, 2025

Язык: Английский

Процитировано

0

Fuzzy Neural Network Applications in Biomass Gasification and Pyrolysis for Biofuel Production: A Review DOI Creative Commons
V V Bukhtoyarov, В С Тынченко, K A Bashmur

и другие.

Energies, Год журнала: 2024, Номер 18(1), С. 16 - 16

Опубликована: Дек. 24, 2024

The increasing demand for sustainable energy has spurred interest in biofuels as a renewable alternative to fossil fuels. Biomass gasification and pyrolysis are two prominent thermochemical conversion processes biofuel production. While these effective, they often influenced by complex, nonlinear, uncertain factors, making optimization prediction challenging. This study highlights the application of fuzzy neural networks (FNNs)—a hybrid approach that integrates strengths logic networks—as novel tool address challenges. Unlike traditional methods, FNNs offer enhanced adaptability accuracy modeling nonlinear systems, them uniquely suited biomass processes. review not only ability optimize predict performance but also identifies their role advancing decision-making frameworks. Key challenges, benefits, future research opportunities explored, showcasing transformative potential

Язык: Английский

Процитировано

1