Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10299 - 10324
Опубликована: Май 17, 2024
Язык: Английский
Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10299 - 10324
Опубликована: Май 17, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127214 - 127214
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1IEEE Communications Surveys & Tutorials, Год журнала: 2023, Номер 25(4), С. 2654 - 2713
Опубликована: Янв. 1, 2023
The deployment of the fifth-generation (5G) wireless networks in Internet Everything (IoE) applications and future (e.g., sixth-generation (6G) networks) has raised a number operational challenges limitations, for example terms security privacy. Edge learning is an emerging approach to training models across distributed clients while ensuring data Such when integrated network infrastructures 6G) can potentially solve challenging problems such as resource management behavior prediction. However, edge (including deep learning) are known be susceptible tampering manipulation. This survey article provides holistic review extant literature focusing on learning-related vulnerabilities defenses 6G-enabled Things (IoT) systems. Existing machine approaches 6G–IoT learning-associated threats broadly categorized based modes, namely: centralized, federated, distributed. Then, we provide overview enabling technologies intelligence. We also existing research attacks against classify threat into eight categories, backdoor attacks, adversarial examples, combined poisoning Sybil byzantine inference dropping attacks. In addition, comprehensive detailed taxonomy comparative summary state-of-the-art defense methods vulnerabilities. Finally, new realized, overall prospects IoT discussed.
Язык: Английский
Процитировано
23Internet of Things and Cyber-Physical Systems, Год журнала: 2023, Номер 3, С. 28 - 36
Опубликована: Янв. 1, 2023
Edge-Cloud Datacenters (ECDCs) have been massively exploited by the owners of technology and industrial centers to satisfy user demand. At same time, amount energy used these data is considerable. To address this challenge, Virtual Machine (VM) placement ECDCs plays an important role; therefore, assigning VM properly physical machines (PM) can significantly decrease consumption. The applied technique simultaneously must consider additional objectives involving traffic power usage network elements, which makes it a challenging problem. This paper proposes multi-objective approach in edge-cloud centers, uses Seagull optimization optimize together. In strategy, among PMs reduced concentrating communications VMs on reduce transferred through PMs' consumption consolidating fewer PMs, consumes less energy. We evaluate with simulations CloudSim test two different topologies, VL2 (Virtual Layer 2) three-tier, validate that proposed effectively ECDCs. experimental results show our method 5.5% while reducing 70% components 80%.
Язык: Английский
Процитировано
22Future Generation Computer Systems, Год журнала: 2023, Номер 151, С. 214 - 231
Опубликована: Окт. 14, 2023
Язык: Английский
Процитировано
19Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10299 - 10324
Опубликована: Май 17, 2024
Язык: Английский
Процитировано
9