Distributed agents structure for current-only adaptive relaying scheme reinforced against failures and cyberattacks DOI Creative Commons
Mohamed Elgamal, Amir Abdel Menaem, Majed A. Alotaibi

и другие.

Ain Shams Engineering Journal, Год журнала: 2024, Номер unknown, С. 103143 - 103143

Опубликована: Ноя. 1, 2024

Язык: Английский

IntDEM: an intelligent deep optimized energy management system for IoT-enabled smart grid applications DOI

P. Ganesh,

B. Meenakshi Sundaram, Praveen Kumar Balachandran

и другие.

Electrical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Июль 24, 2024

Язык: Английский

Процитировано

4

A robust deep learning system for motor bearing fault detection: leveraging multiple learning strategies and a novel double loss function DOI
Khoa D. Tran,

Lam Pham,

Nguyễn Văn Anh

и другие.

Signal Image and Video Processing, Год журнала: 2025, Номер 19(4)

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

A Deep Learning-Based Cyberattack Detection Method for Line Differential Relays DOI
Mohamed Elgamal, Abdelfattah A. Eladl, Bishoy E. Sedhom

и другие.

Internet of Things, Год журнала: 2025, Номер unknown, С. 101574 - 101574

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Advancements in Grid Resilience: Recent Innovations in AI-Driven Solutions DOI Creative Commons

Sana Hafez,

Mohammad Alkhedher, Mohamed Ramadan

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105042 - 105042

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Explainable hybrid forecasting model for a 4-node smart grid stability DOI
Taher M. Ghazal, Mohammad Kamrul Hasan, Rosilah Hassan

и другие.

Energy Reports, Год журнала: 2025, Номер 13, С. 4948 - 4961

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0

A Robust Deep Learning System for Motor Bearing Fault Detection: Leveraging Multiple Learning Strategies and a Novel Double Loss Function DOI Creative Commons
Khoa D. Tran,

Lam Pham,

Nguyễn Văn Anh

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Окт. 30, 2024

Abstract Motor bearing fault detection (MBFD) is vital for ensuring the reliability and efficiency of industrial machinery. Identifying faults early can prevent system breakdowns, reduce maintenance costs, minimize downtime. This paper presents an advanced MBFD using deep learning, integrating multiple training approaches: supervised, semi-supervised, unsupervised learning to improve classification accuracy. A novel double-loss function further enhances model’s performance by refining feature extraction from vibration signals. Our approach rigorously tested on well-known datasets: American Society Mechanical Failure Prevention Technology (MFPT), Case Western Reserve University Bearing Data Center (CWRU), Paderborn University's Condition Monitoring Damage in Electromechanical Drive Systems (PU). Results indicate that proposed method outperforms traditional machine models, achieving high accuracy across all datasets. These findings underline potential applying MBFD, providing a robust solution predictive settings supporting proactive management machinery health.

Язык: Английский

Процитировано

0

Distributed agents structure for current-only adaptive relaying scheme reinforced against failures and cyberattacks DOI Creative Commons
Mohamed Elgamal, Amir Abdel Menaem, Majed A. Alotaibi

и другие.

Ain Shams Engineering Journal, Год журнала: 2024, Номер unknown, С. 103143 - 103143

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0