Satellite Imagery, Big Data, IoT and Deep Learning Techniques for Wheat Yield Prediction in Morocco DOI Creative Commons
Abdelouafi Boukhris, Jilali Antari, Abderrahmane Sadiq

и другие.

Results in Control and Optimization, Год журнала: 2024, Номер 17, С. 100489 - 100489

Опубликована: Ноя. 8, 2024

Язык: Английский

Full-progress crop management and harvesting scheme with integrated space information: A case of jujube orchard DOI
Jing Nie, Yichen Yuan, Yang Li

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер unknown, С. 100699 - 100699

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

3

Distributed inference in IoT-based aerial network of UAVs DOI
Hyungbin Park, SuKyoung Lee,

S. Cho

и другие.

Internet of Things, Год журнала: 2025, Номер 30, С. 101479 - 101479

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

0

A Blockchain-Assisted Trusted Federated Learning for Smart Agriculture DOI Creative Commons

T Manoj,

Krishnamoorthi Makkithaya,

V G Narendra

и другие.

SN Computer Science, Год журнала: 2025, Номер 6(3)

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Efficient Detection of Cotton Verticillium Wilt by Combining Satellite Time-Series Data and Multiview UAV Images DOI Creative Commons
Jing Nie, Jiachen Jiang, Yang Li

и другие.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Год журнала: 2024, Номер 17, С. 13547 - 13557

Опубликована: Янв. 1, 2024

As a crucial economic crop, the health status of cotton directly impacts farmers' income and national economy. Therefore, timely accurate detection identification diseases pests are significant importance, aiding in reducing adverse effects on yield quality. Existing research struggles to address balance between resource consumption accuracy disease pest detection. Moreover, often occur beneath canopy, orthorectification drone imagery may result insufficient feature information prolonged processing time, among other issues. To aforementioned issues, this paper proposes precise method for Verticillium wilt based unmanned aerial vehicle multi-angle remote sensing guided by satellite time series monitoring model. Specifically, first, combining Sentinel-1 microwave Sentinel-2 optical images, we constructed model extreme gradient boosting algorithm identify areas affected invasion. Subsequently, after identifying blocks disease, collected multi-spectral data captured from multiple angles vehicles compared different combinations vegetation indices bands. Finally, classification support vector machine radial basis function method. Experimental results indicate that joint time-series achieved OA 81.73% Kappa coefficient 0.63, meeting requirements first stage. Based SVM with RBF optimal band combination, value comprehensive image at -58° angle reached 96.74%, 0.93, second

Язык: Английский

Процитировано

1

Satellite Imagery, Big Data, Iot and Deep Learning Techniques for Wheat Yield Prediction in Morocco DOI
Abdelouafi Boukhris, Jilali Antari,

Abderahmane Sadiq

и другие.

Опубликована: Янв. 1, 2024

In the domain of efficient management resources and ensuring nutritional consistency, accuracy in predicting crop yields becomes crucial. The advancement artificial intelligence techniques, synchronized with satellite imagery, has emerged as a potent approach for forecasting modern times. We used two types data: spatial data temporal data. Spatial are gathered from imagery processed using ArcGIS to extract about crops based on several indices like NDVI NWDI. Temporal agricultural sensors such temperature sensors, rainfall sensor, precipitation sensor soil moisture sensor. our case we Sentinel 2 vegetation indices. have IoT systems, especially Raspberry Pi B+ collect process coming sensors. All collected then stored into NoSQL server be analysed processed. Several machine learning deep algorithms been processing recommendation system, logistic regression, KNN, decision tree, support vector machine, LSTM, Bi-LSTM through dataset. Bi-GRU model best performance, RMSE this was 3.07.The main contribution paper is development new system that can predict yields, wheat, maize, etc, IoT, use first combined yield algorithms, unlike other works uses only remote sensing or created an E-monitoring prediction helps farmers track all information show result mobile application. This more making enhance production. production regions wheat Morocco rainfed areas plains plateaus Chaouia, Abda, Haouz, Tadla, Gharb Saïs. studied three well known which Rabat-Salé, Fez-Meknes, Casablanca-Settat.

Язык: Английский

Процитировано

0

Satellite Imagery, Big Data, IoT and Deep Learning Techniques for Wheat Yield Prediction in Morocco DOI Creative Commons
Abdelouafi Boukhris, Jilali Antari, Abderrahmane Sadiq

и другие.

Results in Control and Optimization, Год журнала: 2024, Номер 17, С. 100489 - 100489

Опубликована: Ноя. 8, 2024

Язык: Английский

Процитировано

0