Internet of Things, Год журнала: 2024, Номер 28, С. 101432 - 101432
Опубликована: Ноя. 13, 2024
Язык: Английский
Internet of Things, Год журнала: 2024, Номер 28, С. 101432 - 101432
Опубликована: Ноя. 13, 2024
Язык: Английский
Internet of Things, Год журнала: 2024, Номер 28, С. 101336 - 101336
Опубликована: Авг. 29, 2024
Язык: Английский
Процитировано
10Computers & Security, Год журнала: 2025, Номер unknown, С. 104349 - 104349
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 24, 2025
The rapid proliferation of mobile IoT devices with inadequate security measures has elevated to a critical concern. Researchers have proposed various systems for vulnerability detection based on conventional frameworks. However, these approaches often face challenges such as high computational costs, limited storage capacity, and slow response times. To ensure robust protection against cyberattacks, modern solutions must continuously monitor analyze historical data across the entire network. This paper introduces distributed framework networks, leveraging software-defined networking (SDN), blockchain, edge computing efficiently detect mitigate IoT-based attacks. In framework, SDN facilitates network-wide monitoring analysis, enabling effective attack detection. Blockchain technology ensures decentralized tamper-resistant identification, addressing potential vulnerabilities. Meanwhile, paradigm enables real-time at network edge, ensuring timely alerts. An experimental evaluation demonstrates its superiority over traditional in terms accuracy (98.7%), false positive rate (1.2%) time (101.1 ms), highlighting effectiveness securing networks.
Язык: Английский
Процитировано
0Algorithms, Год журнала: 2025, Номер 18(4), С. 209 - 209
Опубликована: Апрель 9, 2025
This paper presents a systematic literature review based on the PRISMA model machine learning-based Distributed Denial of Service (DDoS) attacks in Internet Things (IoT) networks. The primary objective is to compare research trends deployment options, datasets, and learning techniques used domain between 2019 2024. results highlight dominance certain datasets (BoT-IoT TON_IoT) combination with Decision Tree (DT) Random Forest (RF) models, achieving high median accuracy rates (>99%). discusses various that are train evaluate (ML) models for detecting networks how they impact performance. Furthermore, findings suggest due hardware limitations, there preference lightweight ML solutions preprocessed datasets. Current indicate larger or industry-specific will continue gain popularity alongside more complex such as deep learning. emphasizes need robust scalable Software-Defined Networks (SDNs) offering flexibility, edge computing being extensively explored cloud environments, blockchain-integrated emerging promising approach enhancing security.
Язык: Английский
Процитировано
0Internet of Things, Год журнала: 2024, Номер 28, С. 101432 - 101432
Опубликована: Ноя. 13, 2024
Язык: Английский
Процитировано
0