Who Says What in Which Networks: What influences Social Media Users’ Emotional Reactions to the COVID-19 Vaccine Infodemic? DOI
Aimei Yang, Jieun Shin, Hye Min Kim

и другие.

Social Science Computer Review, Год журнала: 2022, Номер 41(6), С. 1986 - 2009

Опубликована: Сен. 24, 2022

This study aims to identify effective predictors that influence publics’ emotional reactions COVID-19 vaccine misinformation as well corrective messages. We collected a large sample of related and messages on Facebook the users’ (i.e., emojis) these Focusing three clusters features such messages’ linguistic features, source characteristics, network positions, we examined whether information would differ. used random forest models most salient among over 70 for both types Our analysis found misinformation, political ideology message was feature predicted anxious enthusiastic reactions, followed by highlight personal concerns positions. For messages, while sources’ still key raising anxiety, important triggering enthusiasm positions quality.

Язык: Английский

Emotion aided multi-task framework for video embedded misinformation detection DOI
Rina Kumari, Vipin Gupta, Nischal Ashok

и другие.

Multimedia Tools and Applications, Год журнала: 2023, Номер 83(12), С. 37161 - 37185

Опубликована: Окт. 19, 2023

Язык: Английский

Процитировано

7

LIMFA: label-irrelevant multi-domain feature alignment-based fake news detection for unseen domain DOI
Danke Wu, Zhenhua Tan, Haoran Zhao

и другие.

Neural Computing and Applications, Год журнала: 2023, Номер 36(10), С. 5197 - 5215

Опубликована: Дек. 27, 2023

Язык: Английский

Процитировано

6

Fake News, Real Emotions: Emotion Analysis of COVID-19 Infodemic in Weibo DOI Creative Commons
Mingyu Wan, Yin Zhong, Xuefeng Gao

и другие.

IEEE Transactions on Affective Computing, Год журнала: 2023, Номер 15(3), С. 815 - 827

Опубликована: Июль 17, 2023

The proliferation of COVID-19 fake news on social media poses a severe threat to the health information ecosystem. We show that affective computing can make significant contributions combat this infodemic. Given is often presented with emotional appeals, we propose new perspective role emotion in attitudes, perceptions, and behaviors dissemination information. study emotions conjunction news, explore different aspects their interaction. To process both 'falsehood' based same set data, auto-tag existing datasets following an established taxonomy. More specifically, distribution seven basic (e.g. Happiness, Like, Fear, Sadness, Surprise, Disgust, Anger ), find across domains styles dominated by xmlns:xlink="http://www.w3.org/1999/xlink">Fear (e.g., coronavirus), xmlns:xlink="http://www.w3.org/1999/xlink">Disgust conflicts). In addition, framing terms gain-versus-loss reveals close correlation between emotions, collective human reactions. Our analysis confirms spreading especially when contextualized loss frame. points future direction incorporating footprints models automatic detection, establishes approach quality general detection particular.

Язык: Английский

Процитировано

4

SciND: a new triplet-based dataset for scientific novelty detection via knowledge graphs DOI
Komal Gupta,

Ammaar Ahmad,

Tirthankar Ghosal

и другие.

International Journal on Digital Libraries, Год журнала: 2024, Номер 25(4), С. 639 - 659

Опубликована: Янв. 8, 2024

Язык: Английский

Процитировано

1

Who Says What in Which Networks: What influences Social Media Users’ Emotional Reactions to the COVID-19 Vaccine Infodemic? DOI
Aimei Yang, Jieun Shin, Hye Min Kim

и другие.

Social Science Computer Review, Год журнала: 2022, Номер 41(6), С. 1986 - 2009

Опубликована: Сен. 24, 2022

This study aims to identify effective predictors that influence publics’ emotional reactions COVID-19 vaccine misinformation as well corrective messages. We collected a large sample of related and messages on Facebook the users’ (i.e., emojis) these Focusing three clusters features such messages’ linguistic features, source characteristics, network positions, we examined whether information would differ. used random forest models most salient among over 70 for both types Our analysis found misinformation, political ideology message was feature predicted anxious enthusiastic reactions, followed by highlight personal concerns positions. For messages, while sources’ still key raising anxiety, important triggering enthusiasm positions quality.

Язык: Английский

Процитировано

7