Prompt Defect Response Via Machine Reading Comprehension Using a Hybrid Large Language Model Approach DOI
Kahyun Jeon, Ghang Lee, Yonghan Kim

и другие.

Опубликована: Янв. 1, 2024

This study proposes a hybrid method using two types of large language models (LLM) for prompt response to defect complaints by exploring rapidly potential causes and repair methods via machine reading comprehension (MRC) tasks. Although numerous past maintenance records guidelines offer valuable insights into or newly reported defects, manually reviewing all data is impractical due the significant time effort required. MRC natural processing (NLP) task that trains read extensive texts answer questions. While recent state-of-the-art (SOTA) LLMs, as they are, exhibit high performance general questions, falter in specialized domains require fine-tuning. However, generating question-answer (QA) datasets fine-tuning time-consuming, taking over 200 days with crowdsourcing. Furthermore, many companies restrict LLM usage daily tasks leakage risks. To mitigate these challenges, this introduces approach wherein Bidirectional Encoder Representations from Transformers (BERT) fine-tuned QA datasets, automatically generated Generative Pre-trained Transformer (GPT) publicly available construction guidelines. The GPT-applied part proposed 2,548 pairs seven half hours, significantly reducing dataset generation time. For MRC, BERT achieved competitive highest F1 score 88.0%, outperforming Korean benchmark's (68.5%). contributes reduced cost resources constructing domain-specific performing efficient complaint within data-secure environment.

Язык: Английский

A Survey of Large Language Models for Healthcare: From Data, Technology, and Applications to Accountability and Ethics DOI
Kai He, Rui Mao, Qika Lin

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

49

A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics DOI Creative Commons
Kai He, Rui Mao, Qika Lin

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 102963 - 102963

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

16

A survey on semantic processing techniques DOI Open Access
Rui Mao, Kai He, Xulang Zhang

и другие.

Information Fusion, Год журнала: 2023, Номер 101, С. 101988 - 101988

Опубликована: Сен. 1, 2023

Язык: Английский

Процитировано

34

CGKPN: Cross-Graph Knowledge Propagation Network with Adaptive Connection for Reasoning-Based Machine Reading Comprehension DOI Open Access
Zhuo Zhao, Guangyou Zhou, Zhiwen Xie

и другие.

ACM Transactions on Intelligent Systems and Technology, Год журнала: 2024, Номер 15(4), С. 1 - 24

Опубликована: Апрель 17, 2024

The task of machine reading comprehension (MRC) is to enable read and understand a piece text then answer the corresponding question correctly. This requires not only be able perform semantic understanding but also possess logical reasoning capabilities. Just like human reading, it involves thinking about from two interacting perspectives semantics logic. However, previous methods based on either consider structure or cannot simultaneously balance reasoning. single form make fully meaning text. Additionally, issue sparsity in composition presents significant challenge for models that rely graph-based To this end, cross-graph knowledge propagation network (CGKPN) with adaptive connection presented address above issues. model first performs self-view node embedding constructed graph update representations graphs. Specifically, relevance matrix between nodes introduced adaptively adjust connections response posed by sparse graph. Subsequently, CGKPN conducts are identical both graphs, effectively resolving conflicts arising different views, enabling better integrate relationships through efficient interaction. Experiments MRC datasets ReClor LogiQA indicate superior performance our proposed compared other existing baselines.

Язык: Английский

Процитировано

14

PROMISE: A pre-trained knowledge-infused multimodal representation learning framework for medication recommendation DOI
Jialun Wu, Xin‐Yao Yu, Kai He

и другие.

Information Processing & Management, Год журнала: 2024, Номер 61(4), С. 103758 - 103758

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

8

Hybrid large language model approach for prompt and sensitive defect management: A comparative analysis of hybrid, non-hybrid, and GraphRAG approaches DOI
Kahyun Jeon, Ghang Lee

Advanced Engineering Informatics, Год журнала: 2025, Номер 64, С. 103076 - 103076

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

1

ReCoMIF: Reading comprehension based multi-source information fusion network for Chinese spoken language understanding DOI
Bo Xie, Xiaohui Jia, Xiawen Song

и другие.

Information Fusion, Год журнала: 2023, Номер 96, С. 192 - 201

Опубликована: Март 29, 2023

Язык: Английский

Процитировано

9

Improving inference via rich path information and logic rules for document-level relation extraction DOI
Huizhe Su, Shaorong Xie, Hang Yu

и другие.

Knowledge and Information Systems, Год журнала: 2025, Номер unknown

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

0

Metacognitive symbolic distillation framework for multi-choice machine reading comprehension DOI
Jiacheng Yao, Xin Xu, Guoxiu He

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113130 - 113130

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Self-explanatory and Retrieval-augmented LLMs for Financial Sentiment Analysis DOI
Filippo Pallucchini, Xulang Zhang, Rui Mao

и другие.

Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Год журнала: 2025, Номер unknown, С. 131 - 137

Опубликована: Март 31, 2025

Язык: Английский

Процитировано

0