Partial multi-label feature selection based on label matrix decomposition DOI
Guanghui Liu, Qiaoyan Li, Xiaofei Yang

и другие.

Neural Computing and Applications, Год журнала: 2024, Номер unknown

Опубликована: Дек. 19, 2024

Язык: Английский

Sparse multi-label feature selection via pseudo-label learning and dynamic graph constraints DOI
Yao Zhang, Jun Tang, Ziqiang Cao

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 102975 - 102975

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Unsupervised feature selection using sparse manifold learning: Auto-encoder approach DOI
Amir Moslemi, Mina Jamshidi

Information Processing & Management, Год журнала: 2024, Номер 62(1), С. 103923 - 103923

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

7

Exploring View-Specific Label Relationships for Multi-View Multi-Label Feature Selection DOI
Pingting Hao, Weiping Ding, Wanfu Gao

и другие.

Information Sciences, Год журнала: 2024, Номер 681, С. 121215 - 121215

Опубликована: Июль 23, 2024

Язык: Английский

Процитировано

4

Graph diffusion with dual-distance metrics for missing multi-label feature selection DOI

Zhi Qin,

Hongmei Chen, Tengyu Yin

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 271, С. 126662 - 126662

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

0

Granular Ball-based Partial Label Feature Selection via Fuzzy Correlation and Redundancy DOI
Wenbin Qian, Junqi Li, Xinxin Cai

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 122047 - 122047

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Feature subset selection for big data via parallel chaotic binary differential evolution and feature-level elitism DOI
Yelleti Vivek, Vadlamani Ravi,

P. Radha Krishna

и другие.

Computers & Electrical Engineering, Год журнала: 2025, Номер 123, С. 110232 - 110232

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0

A machine learning-aided framework for hierarchical management of building structural safety DOI
Guiwen Liu, Jie Liu, Neng Wang

и другие.

Engineering Construction & Architectural Management, Год журнала: 2025, Номер unknown

Опубликована: Март 20, 2025

Purpose Insufficient attention to the building’s structural safety conditions has led loss of life and property as well disastrous social impacts. Although some countries or regions have developed building management policies, they seem lack a solid decision-making basis efficiency. To address this, this paper aims establish data-driven framework achieve economic, efficient accurate safety. Design/methodology/approach This proposes novel for hierarchical using machine learning approaches. A case study in Chongqing, China, is adopted demonstrate its application prove feasibility. The considers database, prediction safety, iteration. Findings results indicate effectiveness proposed framework, which facilitates an existing condition limited fundamental information, allowing design that encompasses structure, mechanisms measures. Furthermore, iteration introduced allow continuous improvement adaptation over time. Practical implications By introducing actions could be taken distinguished buildings, optimizing resource allocation enhancing engineering maintenance. also offers practical guidance decisions regarding new construction. Originality/value provides valuable insights research practice intelligent cost-effective buildings contributes urban renewal.

Язык: Английский

Процитировано

0

Multi-label feature selection via label relaxation DOI
Yuling Fan, Peizhong Liu, Jinghua Liu

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113047 - 113047

Опубликована: Март 1, 2025

Процитировано

0

Screening for Anomalous Safety Condition Among Existing Buildings Using Explainable Machine Learning DOI Creative Commons
Jie Liu, Guiwen Liu, Neng Wang

и другие.

Structural Control and Health Monitoring, Год журнала: 2025, Номер 2025(1)

Опубликована: Янв. 1, 2025

To ensure a safe environment for occupants, evaluating the physical status and service performance of existing buildings is essential. However, large‐scale building condition assessment usually relies on expertise judgment inspectors, which can be costly laborious due to unclear priorities, ambiguous procedures, ineffective operations. address these challenges, this study proposes an explainable machine learning‐based screening model anomalous safety among buildings, narrowing down scope requiring further detailed inspection monitoring. Initially, imbalanced dataset 18,090 survey reports unsafe labels collected. Then, synthetic minority oversampling technique (SMOTE) conducted balance dataset. Subsequently, seven learning models are trained utilizing 10‐fold cross‐validation with grid search. Findings reveal that, based balanced dataset, ensemble significantly better than that individual models. Specifically, XGBoost achieves highest performance, macro‐F1 98.49%, G‐mean value accuracy 98.49%. The final predictive (the SMOTE‐based model) explained using SHapley Additive exPlanations (SHAP). Service year, structure, location three most important features influencing structural safety. This represents promising approach automated optimizing resource allocation, enhancing effectiveness in decision‐making construction maintenance.

Язык: Английский

Процитировано

0

Pointwise fuzzy mutual information based multi-label feature selection via feature low-rank regularization DOI
Qingwei Jia, Tingquan Deng, Ziang Zhang

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113301 - 113301

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0