Utilizing deep learning models for ternary classification in COVID-19 infodemic detection DOI Creative Commons
Jia Luo, Didier El Baz, Lei Shi

и другие.

Digital Health, Год журнала: 2024, Номер 10

Опубликована: Янв. 1, 2024

Objective To address the complexities of distinguishing truth from falsehood in context COVID-19 infodemic, this paper focuses on utilizing deep learning models for infodemic ternary classification detection. Methods Eight commonly used are employed to categorize collected records as true, false, or uncertain. These include fastText, three based recurrent neural networks, two convolutional and transformer-based models. Results Precision, recall, F1-score metrics each category, along with overall accuracy, presented establish benchmark results. Additionally, a comprehensive analysis confusion matrix is conducted provide insights into models’ performance. Conclusion Given limited availability relatively modest size tested data sets, pretrained embeddings simpler architectures tend outperform their more complex counterparts. This highlights potential efficiency detection underscores need further research area.

Язык: Английский

GAMED: Knowledge Adaptive Multi-Experts Decoupling for Multimodal Fake News Detection DOI
Lingzhi Shen, Yunfei Long,

Xiaohao Cai

и другие.

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

2

Potential Features Fusion Network for Multimodal Fake News Detection DOI Open Access
Feifei Kou, Bingwei Wang, Haisheng Li

и другие.

ACM Transactions on Multimedia Computing Communications and Applications, Год журнала: 2025, Номер unknown

Опубликована: Янв. 10, 2025

With the popularization of social networks, fake news is also widely and rapidly spreading, which poses a great threat to Internet. Therefore, how detect automatically efficiently has become an urgent problem be solved. However, existing approaches mostly focus on explicit features (images text) deep fusions, without considering potential such as text emotion image category. To find solution this issue, we propose Potential Features Fusion Network (PFFN), models at same time. exploit features, introduce mixture experts structure process separately, can best use relationships between category detection. Besides, extract fuse them with features. Finally, establish attention-based feature fusion network obtain multi-modal piece thus further improve performance. We make experiments four public datasets (Weibo16, Weibo19, Twitter, PolitiFact), results compared baseline demonstrate that our PFFN better Our code available https://github.com/Wang-bupt/PFFN

Язык: Английский

Процитировано

1

Heterogeneous network for Hierarchical Fine-Grained Domain Fake News Detection DOI
Yue Wang, Shizhong Yuan, Weimin Li

и другие.

Information Processing & Management, Год журнала: 2025, Номер 62(4), С. 104141 - 104141

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

1

Improving multimodal fake news detection by leveraging cross-modal content correlation DOI
Jiao Qiao, Xianghua Li, Chao Gao

и другие.

Information Processing & Management, Год журнала: 2025, Номер 62(5), С. 104120 - 104120

Опубликована: Апрель 5, 2025

Язык: Английский

Процитировано

1

Linguistic feature fusion for arabic fake news detection and named entity recognition using reinforcement learning and swarm optimization DOI
Abdelghani Dahou, Mohamed Abd Elaziz,

Haibaoui Mohamed

и другие.

Neurocomputing, Год журнала: 2024, Номер 598, С. 128078 - 128078

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

5

Pattern formation in reaction-diffusion information propagation model on multiplex simplicial complexes DOI
Yong Ye, Jiaying Zhou, Yi Zhao

и другие.

Information Sciences, Год журнала: 2024, Номер 689, С. 121445 - 121445

Опубликована: Сен. 10, 2024

Язык: Английский

Процитировано

5

Deep Learning and Fusion Mechanism-based Multimodal Fake News Detection Methodologies: A Review DOI Open Access
Iman Qays Abduljaleel,

Israa Hadi Ali

Engineering Technology & Applied Science Research, Год журнала: 2024, Номер 14(4), С. 15665 - 15675

Опубликована: Авг. 2, 2024

Today, detecting fake news has become challenging as anyone can interact by freely sending or receiving electronic information. Deep learning processes to detect multimodal have achieved great success. However, these methods easily fuse information from different modality sources, such concatenation and element-wise product, without considering how each affects the other, resulting in low accuracy. This study presents a focused survey on use of deep approaches visual textual various social networks 2019 2024. Several relevant factors are discussed, including a) detection stage, which involves algorithms, b) for analyzing data types, c) choosing best fusion mechanism combine multiple sources. delves into existing constraints previous studies provide future tips addressing open challenges problems.

Язык: Английский

Процитировано

3

SR-CIBN: Semantic relationship-based consistency and inconsistency balancing network for multimodal fake news detection DOI Creative Commons
Hongzhu Yu, Hongchen Wu, Xiaochang Fang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129997 - 129997

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Mitigating the Proliferation of Fake Image-Text Reviews: A Two-Tier Intra- and Inter-Modal Fusion Framework DOI
Wei Du, J. Li, Jilei Zhou

и другие.

International Journal of Electronic Commerce, Год журнала: 2025, Номер 29(2), С. 304 - 332

Опубликована: Март 27, 2025

Язык: Английский

Процитировано

0

SGDM-GRU: Spectral graph deep learning based Gated Recurrent Unit model for accurate fake news detection DOI Creative Commons
Aqeel Sahi, Mostfa Albdair, Mohammed Diykh

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127572 - 127572

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0