Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 91 - 102
Опубликована: Ноя. 30, 2024
Язык: Английский
Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 91 - 102
Опубликована: Ноя. 30, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 148, С. 110425 - 110425
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Information Processing & Management, Год журнала: 2025, Номер 62(4), С. 104133 - 104133
Опубликована: Март 23, 2025
Язык: Английский
Процитировано
0Neural Processing Letters, Год журнала: 2025, Номер 57(3)
Опубликована: Май 10, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2024, Номер 12(14), С. 2296 - 2296
Опубликована: Июль 22, 2024
Predicting student performance in the future is a crucial behavior prediction problem education. By predicting performance, educational experts can provide individualized instruction, optimize allocation of resources, and develop strategies. If results are unreliable, it difficult to earn trust experts. Therefore, methods need satisfy requirement interpretability. For this reason, model constructed paper using belief rule base (BRB). BRB not only combines expert knowledge, but also has good There two problems applying prediction: first, modeling process, system too complex due large number indicators involved. Secondly, interpretability be compromised during optimization process. To overcome these challenges, introduces hierarchical with (HBRB-I) for prediction. First, analyzes how HBRB-I achieves Then, an attribute grouping method proposed construct structure by reasonably organizing indicators, so as effectively reduce complexity model. Finally, objective function considering designed projected covariance matrix adaptive evolution strategy (P-CMA-ES) algorithm improved. The aim ensure that remains interpretable after optimization. conducting experiments on dataset, demonstrated performs well terms both accuracy
Язык: Английский
Процитировано
2Information Processing & Management, Год журнала: 2024, Номер 62(3), С. 104025 - 104025
Опубликована: Дек. 24, 2024
Язык: Английский
Процитировано
1IEEE Intelligent Systems, Год журнала: 2024, Номер 39(2), С. 62 - 65
Опубликована: Март 1, 2024
Group behavior prediction and evolution in social networks aims to accurately predict model trends patterns of group through detailed analysis massive user data, which is great significance the formulation marketing strategies, experience, business strategies. Therefore, experts various fields are actively exploring potential network data develop more accurate models. This article provides an overview these studies explores challenges opportunities faced by networks.
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 91 - 102
Опубликована: Ноя. 30, 2024
Язык: Английский
Процитировано
0