Опубликована: Окт. 18, 2024
Язык: Английский
Опубликована: Окт. 18, 2024
Язык: Английский
International Review of Economics & Finance, Год журнала: 2025, Номер unknown, С. 103877 - 103877
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Finance research letters, Год журнала: 2025, Номер unknown, С. 107427 - 107427
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2025, Номер 510, С. 145642 - 145642
Опубликована: Май 5, 2025
Язык: Английский
Процитировано
0Finance research letters, Год журнала: 2025, Номер unknown, С. 107600 - 107600
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Electronics, Год журнала: 2024, Номер 13(18), С. 3758 - 3758
Опубликована: Сен. 21, 2024
This study provides a nuanced understanding of AI’s impact on productivity and employment using machine learning models Bayesian Network Analysis. Data from 233 employees across various industries were analyzed logistic regression, Random Forest, XGBoost, with 5-fold cross-validation. The findings reveal that high levels AI tool usage integration within organizational workflows significantly enhance productivity, particularly among younger employees. A significant interaction between tools (β = 0.4319, p < 0.001) further emphasizes the importance comprehensive adoption. Analysis highlights complex interdependencies usage, innovation, employee characteristics. confirms strategic integration, along targeted training programs ethical frameworks, is essential for maximizing economic potential.
Язык: Английский
Процитировано
2Journal of Global Information Management, Год журнала: 2024, Номер 32(1), С. 1 - 21
Опубликована: Ноя. 10, 2024
Recent studies indicate that Artificial Intelligence (AI) technology, characterized by its integration of information and communication technology attributes, exerts a multifaceted influence on the energy system. The authors employ Difference-in-Differences (DID) Triple-Difference (DDD) models to investigate effects AI. research initially demonstrates AI may exhibit dual attributes constraining structure. Specifically, rapid development tends increase proportion fossil fuel-based electricity generation while optimizing consumption renewable energy. Furthermore, degradation structure stems from surge in AI, which capacity is unable satisfy. Lastly, industrial agglomeration construction digital economy have positive impacts energy; technological innovation aids mitigating negative shocks This study provides new perspective role transition.
Язык: Английский
Процитировано
0Опубликована: Окт. 18, 2024
Язык: Английский
Процитировано
0