Fréchet distance in spatial data quality DOI
Daniel E. Cruz, Afonso de Paula dos Santos, Nilcilene das Graças Medeiros

и другие.

Applied Geomatics, Год журнала: 2024, Номер 17(1), С. 17 - 34

Опубликована: Дек. 12, 2024

Язык: Английский

Building layout generation using site-embedded GAN model DOI
Feifeng Jiang, Jun Ma, Chris Webster

и другие.

Automation in Construction, Год журнала: 2023, Номер 151, С. 104888 - 104888

Опубликована: Апрель 25, 2023

Язык: Английский

Процитировано

57

Automated site planning using CAIN-GAN model DOI
Feifeng Jiang, Jun Ma, Chris Webster

и другие.

Automation in Construction, Год журнала: 2024, Номер 159, С. 105286 - 105286

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

15

Global urban road network patterns: Unveiling multiscale planning paradigms of 144 cities with a novel deep learning approach DOI Open Access
Wangyang Chen, Huiming Huang,

Shunyi Liao

и другие.

Landscape and Urban Planning, Год журнала: 2023, Номер 241, С. 104901 - 104901

Опубликована: Сен. 30, 2023

Язык: Английский

Процитировано

14

A study on urban block design strategies for improving pedestrian-level wind conditions: CFD-based optimization and generative adversarial networks DOI
Jingyi Li, Fang Guo, Chen Hong

и другие.

Energy and Buildings, Год журнала: 2023, Номер 304, С. 113863 - 113863

Опубликована: Дек. 24, 2023

Язык: Английский

Процитировано

12

Multi-level urban street representation with street-view imagery and hybrid semantic graph DOI
Yan Zhang, Yong Li, Fan Zhang

и другие.

ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2024, Номер 218, С. 19 - 32

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

4

Advancing Synergistic Urban Heat Island Mitigation Based on Multimodal Data Integration and a Novel Cyclegan-Pix2pix(Cp-Gan) Model DOI
Shiqi Zhou, Xiaodong Xu,

Haowen Xu

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Interpreting core forms of urban morphology linked to urban functions with explainable graph neural network DOI Creative Commons
Dongsheng Chen, Yu Feng, Xun Li

и другие.

Computers Environment and Urban Systems, Год журнала: 2025, Номер 118, С. 102267 - 102267

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Formalising the urban pattern language: A morphological paradigm towards understanding the multi-scalar spatial structure of cities DOI Creative Commons
Cai Wu, Jiong Wang, Mingshu Wang

и другие.

Cities, Год журнала: 2025, Номер 161, С. 105854 - 105854

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

0

Generative Adversarial Networks for Climate-Sensitive Urban Morphology: An Integration of Pix2Pix and the Cycle Generative Adversarial Network DOI Creative Commons
Mo Wang,

Ziheng Xiong,

Jiayu Zhao

и другие.

Land, Год журнала: 2025, Номер 14(3), С. 578 - 578

Опубликована: Март 10, 2025

Urban heat island (UHI) effects pose significant challenges to sustainable urban development, necessitating innovative modeling techniques optimize morphology for thermal resilience. This study integrates the Pix2Pix and CycleGAN architectures generate high-fidelity models aligned with local climate zones (LCZs), enhancing their applicability studies. research focuses on eight major Chinese coastal cities, leveraging a robust dataset of 4712 samples train generative models. Quantitative evaluations demonstrated that integration substantially improved structural fidelity realism in synthesis, achieving peak Structural Similarity Index Measure (SSIM) 0.918 coefficient determination (R2) 0.987. The total adversarial loss training stabilized at 0.19 after 811 iterations, ensuring high convergence structure generation. Additionally, CycleGAN-enhanced outputs exhibited 35% reduction relative error compared Pix2Pix-generated images, significantly improving edge preservation feature accuracy. By incorporating LCZ data, proposed framework successfully bridges climate-responsive planning, enabling adaptive design strategies mitigating UHI effects. enhance generation, while classification produce forms align specific climatological conditions. Compared model trained by coupled alone, approach offers planners more precise tool designing optimizing layouts mitigate effects, improve energy efficiency,

Язык: Английский

Процитировано

0

How geospatial technologies are transforming urban net-zero energy buildings: a comprehensive review of insights, challenges, and future directions DOI Creative Commons
Yang Li, Yang Li

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112357 - 112357

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0