A novel vegetation-water resistant soil moisture index for remotely assessing soil surface moisture content under the low-moderate wheat cover
Computers and Electronics in Agriculture,
Год журнала:
2024,
Номер
224, С. 109223 - 109223
Опубликована: Июль 10, 2024
Язык: Английский
An inclusive approach to crop soil moisture estimation: Leveraging satellite thermal infrared bands and vegetation indices on Google Earth engine
Agricultural Water Management,
Год журнала:
2024,
Номер
306, С. 109172 - 109172
Опубликована: Ноя. 15, 2024
Язык: Английский
The daily soil water content monitoring of cropland in irrigation area using Sentinel-2/3 spatio-temporal fusion and machine learning
International Journal of Applied Earth Observation and Geoinformation,
Год журнала:
2024,
Номер
132, С. 104081 - 104081
Опубликована: Авг. 1, 2024
Understanding
soil
moisture
dynamics
is
crucial
for
crop
growth.
The
digital
mapping
of
field
distribution
provides
valuable
information
agricultural
water
management.
optical
satellite
data
fine
scale
a
region.
However,
these
are
greatly
limited
due
to
cloud
contamination
and
revisit
period.
Despite
the
reported
beneficial
effects
spatiotemporal
fusion
methods,
accurate
estimates
high-resolution
through
still
unclear,
particularly
when
using
Sentinel-2/3
images.
This
study
introduces
new
estimation
framework
integrating
spatio-temporal
spectral
from
images
machine
learning
algorithm,and
thus
provide
spatiotemporally
continuous
estimation.
includes
four
methods
(ESTARRFM,
Fit-FC,
FSDAF
STFMF)
models
(PLSR,
SVM,
RF
GBRT).
feasibility
was
validated
in
Hetao
Irrigation
Area
Inner
Mongolia,
China.
results
showed
that
fused
image
generated
by
Fit-FC
visually
closest
true
image,
followed
ESTARFM,
FSDAF,
STFMF.
fusion-machine
provided
reliable
multi-layer
(0
∼
20,
20
40
60
cm)
irrigation
area.
dense
time
series
facilitated
detection
events
irrigated
farmland.
Our
findings
highlighted
effectiveness
providing
daily
monitoring
farmland
on
large
scale.
These
high
spatial–temporal
resolution
growth
resource
management,
contributing
further
expanding
application
remote
sensing
precision
agriculture.
Язык: Английский
Remote sensing vegetation Indices-Driven models for sugarcane evapotranspiration estimation in the semiarid Ethiopian Rift Valley
ISPRS Journal of Photogrammetry and Remote Sensing,
Год журнала:
2024,
Номер
215, С. 136 - 156
Опубликована: Июль 8, 2024
Язык: Английский
SAR2ET: End-to-End SAR-Driven Multisource ET Imagery Estimation Over Croplands
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
Год журнала:
2024,
Номер
17, С. 14790 - 14805
Опубликована: Янв. 1, 2024
Язык: Английский
Enhancing field soil moisture content monitoring using laboratory-based soil spectral measurements and radiative transfer models
Agriculture Communications,
Год журнала:
2024,
Номер
unknown, С. 100060 - 100060
Опубликована: Ноя. 1, 2024
Язык: Английский
Satellite-Based energy balance for estimating actual sugarcane evapotranspiration in the Ethiopian Rift Valley
ISPRS Journal of Photogrammetry and Remote Sensing,
Год журнала:
2025,
Номер
223, С. 109 - 130
Опубликована: Март 13, 2025
Язык: Английский
A universal triangle method for evapotranspiration estimation with MODIS products and routine meteorological observations: Algorithm development and global validation
Agricultural Water Management,
Год журнала:
2024,
Номер
302, С. 109017 - 109017
Опубликована: Авг. 22, 2024
Язык: Английский
Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018
Peidong Han,
Guang Yang,
Yangyang Liu
и другие.
Agronomy,
Год журнала:
2024,
Номер
14(11), С. 2606 - 2606
Опубликована: Ноя. 5, 2024
The
quantitative
assessment
of
the
impact
vegetation
restoration
on
evapotranspiration
and
its
components
is
great
significance
in
developing
sustainable
ecological
strategies
for
water
resources
a
given
region.
In
this
study,
we
used
Priestley-Taylor
Jet
Pro-pulsion
Laboratory
(PT-JPL)
to
simulate
ET
Helong
section
(HLS)
Yellow
River
basin.
effects
components,
transpiration
(Et),
soil
evaporation
(Es),
canopy
interception
(Ei)
were
separated
by
manipulating
model
variables.
Our
findings
are
as
follows:
(1)
simulation
results
compared
with
calculated
balance
annual
average
MODIS
products.
R2
validation
0.61
0.78,
respectively.
show
that
PT-JPL
tracks
change
HLS
well.
During
2000–2018,
ET,
Ei,
Es
increased
at
rate
1.33,
0.87,
2.99
mm/a,
respectively,
while
Et
decreased
2.52
mm/a.
(2)
Vegetation
region
from
331.26
mm
(vegetation-unchanged
scenario)
338.85
(vegetation
during
study
period,
an
increase
2.3%.
(3)
TMP
(temperature)
VPD
(vapor
pressure
deficit)
dominant
factors
affecting
changes
most
areas
HLS.
more
than
37.2%
HLS,
dominated
vapor
difference
(VPD)
area
30.5%
Overall,
precipitation
(PRE)
main
changes.
Compared
previous
studies
directly
explore
relationship
between
many
influencing
through
correlation
research
methods,
our
uses
control
variables
obtain
under
two
different
scenarios
then
performs
analysis.
This
method
can
reduce
excessive
interference
other
results.
provide
strategic
support
future
resource
management
Язык: Английский
First Assessment of Cloud‐Land Coupling in LASSO Large‐Eddy Simulations
Geophysical Research Letters,
Год журнала:
2024,
Номер
51(14)
Опубликована: Июль 26, 2024
Abstract
To
enhance
our
understanding
of
cloud
simulations
over
land,
this
study
provides
the
first
assessment
coupling
between
and
land
surface
in
Large‐Eddy
Simulation
(LES)
Atmospheric
Radiation
Measurement
Symbiotic
Observation
(LASSO)
activity
for
shallow
convection
scenario.
The
analysis
observation
data
reveals
a
diurnal
cycle
cloud‐land
coupling,
which
co‐varies
with
fluxes.
However,
coupled
(or
decoupled)
cumulus
clouds
are
inadequately
simulated,
manifesting
as
too‐high
low)
occurrence
frequency
during
afternoon.
This
discrepancy
is
mirrored
by
overestimated
liquid
water
path
cloud‐top
height.
These
overestimations
linked
to
overpredicted
boundary‐layer
development
easier
trigger
misrepresented
LES
runs.
Our
underscores
need
improve
representations
processes
interactions
within
better
simulate
future.
Язык: Английский