Applying Data Analysis and Machine Learning Methods to Predict Permafrost Coast Erosion DOI Creative Commons
Daria Bogatova, Stanislav Ogorodov

Geosciences, Год журнала: 2024, Номер 15(1), С. 2 - 2

Опубликована: Дек. 26, 2024

This study aims to establish a scientific and methodological basis for predicting shoreline positions using modern data analysis machine learning techniques. The focus area is 5 km section of the Ural coast along Baydaratskaya Bay in Kara Sea. region was selected due its diverse geomorphological features, varied lithological composition, significant presence permafrost processes, all contributing complex patterns change. Applying advanced methods, including correlation factor analysis, enables identification natural signs that highlight areas active coastal retreat. These insights are valuable arctic development planning, as they help recognize zones at highest risk transformation. erosion process can be conceptualized comprising two primary components construct predictive model first random variable encapsulates effects local structural changes coastline alongside fluctuations climatic conditions. component statistically characterized define confidence interval variability. second represents systematic shift, which reflects regular average over time. more suited modeling. Thus, information processing methods allow us move from descriptive numerical assessments dynamics processes. goal ultimately support responsible sustainable highly sensitive region.

Язык: Английский

Coupling ICESat-2 and Sentinel-2 data for inversion of mangrove tidal flat to predict future distribution pattern of mangroves DOI Creative Commons
Xinguo Ming,

Yichao Tian,

Qiang Zhang

и другие.

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 136, С. 104398 - 104398

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Re-Using Historical Aerial Imagery for Obtaining 3D Data of Beach-Dune Systems: A Novel Refinement Method for Producing Precise and Comparable DSMs DOI Creative Commons
Jaime Almonacid-Caballer, Carlos Cabezas-Rabadán,

Denys Gorkovchuk

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(4), С. 594 - 594

Опубликована: Фев. 10, 2025

This study explores the potential of repurposing historical aerial photographs to produce high-accuracy digital surface models (DSMs) at regional scales. A novel methodology is introduced, incorporating road points for quality control and refinement enhance precision comparability multitemporal DSMs. The method consists two phases. first photogrammetric phase, where DSMs are generated using structure from motion (SfM) techniques. second which uses a large number (millions) extracted centrelines evaluate altimetric residuals—defined as differences between reference DSM. These filtered ensure that they represent stable positions. analysis shows initial residuals exhibit geographical trends, rather than random behaviour, removed after refinement. An application example covering whole coast Valencian region (Eastern Spain, 518 km coastline) obtention series composed six achieves levels accuracy (0.15–0.20 m) comparable modern LiDAR techniques, offering cost-effective alternative three-dimensional characterisation. foredune coastal environment demonstrated method’s effectiveness in quantifying sand volumetric changes through comparison with achieved crucial establishing precise sedimentary balances, essential management. At same time, this significant its other dynamic landscapes, well urban or agricultural monitoring.

Язык: Английский

Процитировано

0

The ensemble learning combined with the pruning model reveals the spectral response mechanism of tidal flat mapping in China DOI Creative Commons

Jiapeng Dong,

Kai Jia, Chongyang Wang

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103104 - 103104

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Comparison of efficiency of spectral (NDWI) and SAR (GRD) method in shoreline detection; A Novel method of integrating GRD and SLC products of sentinel-1 satellite DOI

Rahimeh Shamsaie,

Danial Ghaderi

Regional Studies in Marine Science, Год журнала: 2025, Номер unknown, С. 104132 - 104132

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

LogiTide2DEM: A method for reconstructing intertidal topography in complex tidal flats using logistic regression with multi-temporal Sentinel-2 and Landsat imagery DOI Creative Commons
Yi‐Chin Chen, Sufen Wang

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 139, С. 104561 - 104561

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

Tidal flat topography mapping with Sentinel time series using cross-modal sample transfer and deep learning DOI
Pengfei Tang, Shanchuan Guo, Lu Qie

и другие.

ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 225, С. 69 - 87

Опубликована: Апрель 27, 2025

Язык: Английский

Процитировано

0

The interannual variations of installed capacity for offshore wind turbines in China: estimations derived solely from remote sensing DOI Creative Commons

Qiannan Ding,

Chunpeng Chen, Bo Tian

и другие.

Geo-spatial Information Science, Год журнала: 2025, Номер unknown, С. 1 - 19

Опубликована: Апрель 30, 2025

Язык: Английский

Процитировано

0

Extracting waterline and inverting tidal flats topography based on Sentinel-2 remote sensing images: A case study of the northern part of the North Jiangsu radial sand ridges DOI

Jicheng Cao,

Qing Liu,

Chengfeng Yu

и другие.

Geomorphology, Год журнала: 2024, Номер 461, С. 109323 - 109323

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

3

A highly efficient index for robust mapping of tidal flats from sentinel-2 images directly DOI
Pengfei Tang, Shanchuan Guo, Peng Zhang

и другие.

ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2024, Номер 218, С. 742 - 760

Опубликована: Окт. 12, 2024

Язык: Английский

Процитировано

3

Coastal reclamation shaped narrower and steeper tidal flats in Fujian, China: Evidence from time-series satellite data DOI Open Access
Wenting Wu, Min Zhang, Chunpeng Chen

и другие.

Ocean & Coastal Management, Год журнала: 2023, Номер 247, С. 106933 - 106933

Опубликована: Ноя. 16, 2023

Язык: Английский

Процитировано

8