A Mission Planning Method for Long-Endurance Unmanned Aerial Vehicles: Integrating Heterogeneous Ground Control Resource Allocation DOI Creative Commons
Kai Li, Cheng Zhu,

Xiaogang Pan

и другие.

Drones, Год журнала: 2024, Номер 8(8), С. 385 - 385

Опубликована: Авг. 8, 2024

Long-endurance unmanned aerial vehicles (LE-UAVs) are extensively used due to their vast coverage and significant payload capacities. However, limited autonomous intelligence necessitates the intervention of ground control resources (GCRs), which include one or more operators, during mission execution. The performance these missions is notably affected by varying effectiveness different GCRs fatigue levels. Current research on multi-UAV planning inadequately addresses critical factors. To tackle this practical issue, we present an integrated optimization problem for multi-LE-UAV combined with heterogeneous GCR allocation. This extends traditional cooperative incorporating allocation decisions. coupling decisions increases dimensionality decision space, rendering complex. By analyzing problem’s characteristics, develop a mixed-integer linear programming model. effectively solve problem, propose bilevel algorithm based hybrid genetic framework. Numerical experiments demonstrate that our proposed solves outperforming advanced toolkit CPLEX. Remarkably, larger-scale instances, achieves superior solutions within 10 s compared CPLEX’s 2 h runtime.

Язык: Английский

DM_CorrMatch: a semi-supervised semantic segmentation framework for rapeseed flower coverage estimation using UAV imagery DOI Creative Commons
Jie Li, Chengyong Zhu, Chenbo Yang

и другие.

Plant Methods, Год журнала: 2025, Номер 21(1)

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

CTSeg: CNN and ViT collaborated segmentation framework for efficient land-use/land-cover mapping with high-resolution remote sensing images DOI Creative Commons
Jifa Chen, Gang Chen,

Pin Zhou

и другие.

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 139, С. 104546 - 104546

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

The Identification of Exposed Beachrocks on South China Sea Islands Based on UAV Images DOI Creative Commons
Chuang Liu, Wei Gao, Junhui Xing

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(9), С. 1647 - 1647

Опубликована: Май 7, 2025

Beachrocks are common coastal sedimentary rocks in tropical and subtropical seas. They widely spread especially islands areas. These important for island geological evolution research. Research on beachrocks aids protecting ecosystems enhances islands’ ability to prevent mitigate damage from natural disasters. This study uses unmanned aerial vehicle (UAV) images the U-Net model based deep learning identify beachrocks. To enhance identification accuracy, efficient channel attention (ECA) mechanism was integrated, leading improvements of 0.49% overall 1.41% precision, 0.97% recall, 1.10% F1-score, 2.09% intersection over union (IoU) compared baseline model. The final results demonstrate that effectively identified beachrocks, achieving 97.47% 93.27% 94.73% 93.95% 88.65% IoU. offers a valuable tool research supports development large-scale conservation efforts.

Язык: Английский

Процитировано

0

Semantic Segmentation of Areal Images using Pixel Wise Segmentation DOI Open Access

Swathi Gowroju,

V. Swathi,

K. Narsimhulu

и другие.

Procedia Computer Science, Год журнала: 2025, Номер 259, С. 463 - 472

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Time series changes and influencing factors of fractional vegetation coverage under weed competition in wheat field ecosystems through remote sensing DOI Creative Commons
Guofeng Yang, Yong He, Zhenjiang Zhou

и другие.

International Journal of Digital Earth, Год журнала: 2025, Номер 18(1)

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0

Advances in remote sensing techniques in engineering geology for infrastructure inspection and site characterization DOI
Volker Reinprecht, Markus Kaspar

Geomechanics and Tunnelling, Год журнала: 2025, Номер unknown

Опубликована: Май 20, 2025

Abstract Remote sensing technologies have significantly transformed engineering geology over the past two decades, enabling efficient data collection for infrastructure inspection and site characterization. Advances in sensor platforms, including unmanned aerial vehicle (UAV)‐based photogrammetry, light detection ranging (LiDAR), interferometric synthetic aperture radar (InSAR), led to significant advances terrain monitoring, rock mass characterization, geohazard assessment. While these improve accuracy accessibility, they also introduce challenges related processing integration. This study discusses advantages limitations of active passive remote methods emphasizes their role geological investigations. Based on short case studies, need multidisciplinary approaches fully exploit geology, ensuring more reliable cost‐effective monitoring hazard mitigation strategies.

Язык: Английский

Процитировано

0

Artificial intelligence based semantic segmentation on aerial images with variational mode decomposition DOI
Anupa Vijai,

S Padmavathi,

D Venkataraman

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 156, С. 111140 - 111140

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0

Gaussian-based R-CNN with large selective kernel for rotated object detection in remote sensing images DOI
Xiao Yang, Ahmad Sufril Azlan Mohamed

Neurocomputing, Год журнала: 2024, Номер 620, С. 129248 - 129248

Опубликована: Дек. 27, 2024

Язык: Английский

Процитировано

2

LandslideSegNet: an effective deep learning network for landslide segmentation using remote sensing imagery DOI Creative Commons
Abdullah ŞENER, Burhan Ergen

Earth Science Informatics, Год журнала: 2024, Номер 17(5), С. 3963 - 3977

Опубликована: Авг. 9, 2024

Abstract In recent years, remote sensing technologies have played a crucial role in the detection and management of natural disasters. this context, deep learning models are great importance for early disasters such as landslides. Landslide segmentation is fundamental tool development geographic information systems, disaster risk mitigation strategies. study, we propose new semantic model called LandslideSegNet to improve intervention capabilities potential landslide scenarios. incorporates an encoder-decoder architecture that integrates local contextual information, advanced residual blocks Efficient Hybrid Attentional Atrous Convolution. Thanks structure, able extract high-resolution feature maps from imagery, accurately delineate areas minimize loss information. The developed has shown significantly higher accuracy rates with fewer parameters compared existing image models. was trained tested using Landslide4Sense dataset specially prepared detection. achieved 97.60% 73.65% mean Intersection over Union 73.65 on dataset, demonstrating its efficiency. These results indicate usability related applications.

Язык: Английский

Процитировано

1

Path Planning of UAV Formations Based on Semantic Maps DOI Creative Commons
Tianye Sun, Wei Sun, Changhao Sun

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(16), С. 3096 - 3096

Опубликована: Авг. 22, 2024

This paper primarily studies the path planning problem for UAV formations guided by semantic map information. Our aim is to integrate prior information from maps provide initial on task points formations, thereby formation paths that meet practical requirements. Firstly, a segmentation network model based multi-scale feature extraction and fusion employed obtain aerial containing environmental Secondly, maps, three-point optimization optimal trajectory established, general formula calculating heading angle proposed approximately decouple triangular equation of trajectory. For large-scale points, an improved fuzzy clustering algorithm classify distance constraints clusters, reducing computational scale single samples without changing sample size improving allocation efficiency model. Experimental data show cluster method using angle-optimized achieves 8.6% improvement in total flight range compared other algorithms 17.4% reduction number large-angle turns.

Язык: Английский

Процитировано

1