Sustainable Management and Agriculture Resource Technology System using Remote Sensing Descriptors and IoT DOI Creative Commons
Neerav Sharma,

Shubham Bhattacharjee,

Rahul Garg

и другие.

GEOMATICA, Год журнала: 2024, Номер unknown, С. 100040 - 100040

Опубликована: Ноя. 1, 2024

Язык: Английский

NDVI Performance for Monitoring Agricultural Energy Inputs Using Landsat Imagery: A Study in the Ecuadorian Andes (2012–2023) DOI Open Access
Pedro Zea, Cristina Pascual, Luis G. García‐Montero

и другие.

Sustainability, Год журнала: 2025, Номер 17(8), С. 3480 - 3480

Опубликована: Апрель 14, 2025

The NDVI is typically associated with medium-resolution images, e.g., Landsat imagery, and has often been linked to various agricultural parameters, except energy inputs. Thus, our objective was analyze the performance of images monitor both evolution impact inputs on spectral activity in some rural mountain crops. To do so, we studied three scenarios Ecuadorian Andes: high-mountain agroforestry systems (HAFSs), short-cycle production (SHCs), low-mountain (LAFSs). In 2022, information collected for 415 (through field surveys). Using Google Earth Engine, analyzed data between 2012 2023. Statistical analysis demonstrated significant positive correlations NDVI. As a novelty, this result means that influence crops’ activity. Furthermore, historical enhancement across at image scale. Therefore, further studies are needed improve resolution approach, example, by integrating higher-resolution assess more accurate response.

Язык: Английский

Процитировано

2

Spatiotemporal Detection of Ecological Environment Quality Changes in the Lijiang River Basin Using a New Dual Model DOI Open Access
Ning Li, Haoyu Wang, Wen He

и другие.

Sustainability, Год журнала: 2025, Номер 17(2), С. 414 - 414

Опубликована: Янв. 8, 2025

Detecting spatiotemporal changes in ecological environment quality (EEQ) is of great importance for maintaining regional security and supporting sustainable economic social development. However, research on EEQ detection from a remote sensing perspective insufficient, especially at the basin scale. Based two indices, namely, Ecological Index (EI) Remote Sensing (RSEI), we established dual model, combining comprehensive index (RSECI) its differential change to study evolutionary characteristics Lijiang River Basin (LRB) 2000 2020. The RSECI combines following five indicators: greenness, wetness, heat, dryness, aerosol optical depth. results this show that area good excellent LRB decreased 3676.22 km2 2083.89 2020, while poor fair increased 80.81 1375.91 From curve difference first rose, fell, then rose again. wetness greenness indicators had positive effects promoting EEQ, depth, dryness restraining effects. stepwise regression analysis showed that, among selected indicators, were key factors improving during period. approach model proposed can be used quantitatively evaluate facilitate spatial temporal dynamic EEQ.

Язык: Английский

Процитировано

1

An integrated artificial intelligence-deep learning approach for vegetation canopy assessment and monitoring through satellite images DOI
Nazila Shamloo, Mohammad Taghi Sattari, Khalil Valizadeh Kamran

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

1

Digital technologies for water use and management in agriculture: Recent applications and future outlook DOI Creative Commons
Carlos Parra-López, Saker Ben Abdallah, Guillermo Garcia‐Garcia

и другие.

Agricultural Water Management, Год журнала: 2025, Номер 309, С. 109347 - 109347

Опубликована: Фев. 2, 2025

Язык: Английский

Процитировано

0

Farmland change at different altitudes: A global analysis of climate and anthropogenic influences DOI
Yuxin Zhang, Juying Sun, Yafeng Lu

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 968, С. 178855 - 178855

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

Field-scale evaluation of low-elevation and mobile drip irrigation systems DOI Creative Commons
Masoumeh Hashemi, Matt A. Yost,

Jonathan Holt

и другие.

Agricultural Water Management, Год журнала: 2025, Номер 314, С. 109502 - 109502

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

Artificial Intelligence and IoT for Water Saving in Agriculture: A Systematic Review DOI Creative Commons
Lucio Colizzi, Giovanni Dimauro, Emanuela Guerriero

и другие.

Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 101008 - 101008

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Fusion of Sentinel-2 Phenology Metrics and Saturation-Resistant Vegetation Indices for Improved Correlation with Maize Yield Maps DOI Creative Commons
Dorijan Radočaj, Ivan Plaščak, Mladen Jurišić

и другие.

Agronomy, Год журнала: 2025, Номер 15(6), С. 1329 - 1329

Опубликована: Май 29, 2025

To authors’ knowledge, no previous studies thoroughly focused on determining the single optimal combination of vegetation index and phenology metric for maize yield assessment based ground truth map from combine harvester. Therefore, main objective this study was to evaluate correlation between all combinations eight indices seven metrics with yield. A specific focus put evaluating saturation-resistant utilizing Sentinel-2 images, including novel such as Inverted Difference Vegetation Index (IDVI), Three Red-Edge (NDVI3RE) Plant Phenology (PPI). Twelve parcels located in Eastern Croatia were observed during 2022 2023, a total area data 67.61 ha. The analysis indicated varying strengths yield, NDVI3RE Senescence producing highest Pearson coefficient (0.506). However, relationship combined dataset which included 1–12 individual varied notably is likely indicative interannual weather variations. Overall, reduced saturation effect red-edge-based suggests that it may be more suitable prediction.

Язык: Английский

Процитировано

0

Estimation of Intercepted Solar Radiation and Stem Water Potential in a Table Grape Vineyard Covered by Plastic Film Using Sentinel-2 Data: A Comparison of OLS-, MLR-, and ML-Based Methods DOI Creative Commons
Alessandro Farbo, Nicola Gerardo Trombetta, L. de Palma

и другие.

Plants, Год журнала: 2024, Номер 13(9), С. 1203 - 1203

Опубликована: Апрель 25, 2024

In the framework of precision viticulture, satellite data have been demonstrated to significantly support many tasks. Specifically, they enable rapid, large-scale estimation some viticultural parameters like vine stem water potential (Ψstem) and intercepted solar radiation (ISR) that traditionally require time-consuming ground surveys. The practice covering table grape vineyards with plastic films introduces an additional challenge for estimation, potentially affecting spectral responses and, consequently, accuracy estimations from satellites. This study aimed address these challenges a special focus on exploitation Sentinel-2 Level 2A meteorological monitor plastic-covered vineyard in Southern Italy. Estimates Ψstem ISR were obtained using different algorithms, namely, Ordinary Least Square (OLS), Multivariate Linear Regression (MLR), machine learning (ML) techniques, which rely Random Forest Regression, Support Vector Partial Squares. results proved that, despite interference coverings, can be locally estimated satisfying accuracy. particular, (i) OLS regression-based approach showed good performance providing accurate estimates near-infrared bands (RMSE < 8%), (ii) MLR ML algorithms could estimate both status higher 7 RMSE 0.14 MPa Ψstem). These encourage adoption medium-high resolution multispectral imagery deriving key crop even anomalous situations ones where cover monitored vineyard, thus marking significant advancement viticulture.

Язык: Английский

Процитировано

2

A novel model for mapping soil organic matter: Integrating temporal and spatial characteristics DOI Creative Commons
Xinle Zhang, Guowei Zhang, Sheng‐Qi Zhang

и другие.

Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102923 - 102923

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

2