Annals of the American Association of Geographers, Год журнала: 2025, Номер unknown, С. 1 - 22
Опубликована: Июнь 3, 2025
Язык: Английский
Annals of the American Association of Geographers, Год журнала: 2025, Номер unknown, С. 1 - 22
Опубликована: Июнь 3, 2025
Язык: Английский
Building and Environment, Год журнала: 2024, Номер 263, С. 111875 - 111875
Опубликована: Июль 28, 2024
Язык: Английский
Процитировано
16Computers Environment and Urban Systems, Год журнала: 2025, Номер 117, С. 102253 - 102253
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
2HardwareX, Год журнала: 2025, Номер unknown, С. e00643 - e00643
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Computers Environment and Urban Systems, Год журнала: 2025, Номер 120, С. 102302 - 102302
Опубликована: Май 9, 2025
Язык: Английский
Процитировано
1International Journal of Geographical Information Science, Год журнала: 2024, Номер 38(12), С. 2514 - 2544
Опубликована: Авг. 27, 2024
Street view imagery (SVI), an emerging geospatial dataset, is useful for evaluating active transportation infrastructure, but it faces potential biases from its vehicle-based capture method, diverging pedestrians' and cyclists' perspectives. Existing literature lacks both examination of these a solution. This study identifies quantifies by comparing conventional SVI with views the road shoulder/sidewalk. To mitigate such perspective biases, we introduce novel framework generative adversarial network (GAN)-based image generation models (Pix2Pix CycleGAN), regression model (ResNet-50), tabular (LightGBM). Experiments assessed effectiveness in translating car-centric to those pedestrian cyclist Results show significant differences semantic indicators (e.g. green index) between center shoulder/sidewalk SVI, low Pearson's correlation coefficients r (0.35–0.55 shoulders 0.45–0.47 sidewalks) indicating bias. The succeeded creating realistic images aligning pixel ratios perspectives, achieving strong (0.81 0.83 sidewalks), thus reducing work contributes providing scalable model-agnostic approach produce accurate SVIs urban planning sustainability, setting foundation improving bikeability walkability assessments promoting transportation.
Язык: Английский
Процитировано
8Scientific Data, Год журнала: 2025, Номер 12(1)
Опубликована: Янв. 16, 2025
Road unevenness significantly impacts the safety and comfort of traffic participants, especially vulnerable groups such as cyclists wheelchair users. To train models for comprehensive road surface assessments, we introduce StreetSurfaceVis, a novel dataset comprising 9,122 street-level images mostly from Germany collected crowdsourcing platform manually annotated by type quality. By crafting heterogeneous dataset, aim to enable robust that maintain high accuracy across diverse image sources. As frequency distribution types qualities is highly imbalanced, propose sampling strategy incorporating various external label prediction resources ensure sufficient per class while reducing manual annotation. More precisely, estimate impact (1) enriching data with OpenStreetMap tags, (2) iterative training application custom classification model, (3) amplifying underrepresented classes through prompt-based GPT-4o (4) similarity search using embeddings. Combining these strategies effectively reduces annotation workload ensuring representation.
Язык: Английский
Процитировано
1ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 220, С. 841 - 854
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Sustainable Cities and Society, Год журнала: 2024, Номер 116, С. 105862 - 105862
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
6Cities, Год журнала: 2024, Номер 156, С. 105473 - 105473
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
6Transportation Research Part A Policy and Practice, Год журнала: 2024, Номер 190, С. 104286 - 104286
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
6