Information Fusion, Год журнала: 2025, Номер unknown, С. 103356 - 103356
Опубликована: Июнь 1, 2025
Язык: Английский
Information Fusion, Год журнала: 2025, Номер unknown, С. 103356 - 103356
Опубликована: Июнь 1, 2025
Язык: Английский
IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2025, Номер 63, С. 1 - 18
Опубликована: Янв. 1, 2025
Timely and accurate representation of sea surface dynamic fields is crucial for oil spill drift prediction. Numerically forecasted are available in a timely manner, but their accuracy limited. Conversely, reanalysis offer superior suffer from time delays. To enhance the performance prediction, we propose deep learning-based approach to correcting numerically fields, aligning them more closely with fields. Our introduces an adversarial temporal convolutional network (ATCN) framework, consisting (TCN)-based corrector discriminator. The TCN can characterize field sequences both spatially temporally. In this scenario, processes outputs corrected that approximate Adversarial training discriminator further refines corrector. This enhances prediction using We also provide dataset drifts Symphony Sanchi accidents, including related data remote sensing data, establishing baseline evaluating Experiments on validate ATCN framework's effectiveness enhancing
Язык: Английский
Процитировано
5Pattern Recognition, Год журнала: 2025, Номер unknown, С. 111481 - 111481
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
4Pattern Recognition, Год журнала: 2025, Номер unknown, С. 111410 - 111410
Опубликована: Янв. 1, 2025
Процитировано
1Intelligent Marine Technology and Systems, Год журнала: 2025, Номер 3(1)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
1Information Fusion, Год журнала: 2025, Номер 123, С. 103269 - 103269
Опубликована: Май 5, 2025
Язык: Английский
Процитировано
0ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 225, С. 328 - 340
Опубликована: Май 9, 2025
Язык: Английский
Процитировано
0Frontiers in Marine Science, Год журнала: 2025, Номер 12
Опубликована: Май 16, 2025
Underwater 3D reconstruction is essential for marine surveying, ecological protection, and underwater engineering. Traditional methods, designed air environments, fail to account optical properties, leading poor detail retention, color reproduction, visual consistency. In recent years, Gaussian Splatting (3DGS) has emerged as an efficient alternative, offering improvements in both speed quality. However, existing 3DGS methods struggle adaptively adjust point distribution based on scene complexity, often resulting inadequate complex areas inefficient resource usage simpler ones. Additionally, depth variations scenes affect image clarity, current lack adaptive depth-based rendering, inconsistent clarity between near distant objects. Existing loss functions, primarily address challenges such distortion structural differences. To these challenges, we propose improved method combining complexity-adaptive distribution, depth-adaptive multi-scale radius a tailored function environments. Our enhances accuracy Experimental results static dynamic datasets show significant rendering accuracy, stability compared traditional making it suitable practical applications.
Язык: Английский
Процитировано
0Computer Methods and Programs in Biomedicine, Год журнала: 2025, Номер unknown, С. 108848 - 108848
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Signal Image and Video Processing, Год журнала: 2025, Номер 19(8)
Опубликована: Май 28, 2025
Язык: Английский
Процитировано
0Pattern Recognition Letters, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0