Prediction of compression coefficient of Nanjing floodplain soft soil based on explainable artificial intelligence DOI
Bin Ruan,

Chongjin Liu,

Zhenglong Zhou

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103308 - 103308

Опубликована: Апрель 8, 2025

Язык: Английский

Predicting residual strength of hybrid fibre-reinforced Self-compacting concrete (HFR-SCC) exposed to elevated temperatures using machine learning DOI Creative Commons
Muhammad Saud Khan, Liqiang Ma, Waleed Bin Inqiad

и другие.

Case Studies in Construction Materials, Год журнала: 2024, Номер 22, С. e04112 - e04112

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

5

Investigating Landfill Leachate and Groundwater Quality Prediction Using a Robust Integrated Artificial Intelligence Model: Grey Wolf Metaheuristic Optimization Algorithm and Extreme Learning Machine DOI Open Access
Meysam Alizamir, Zahra Kazemi,

Zohre Kazemi

и другие.

Water, Год журнала: 2023, Номер 15(13), С. 2453 - 2453

Опубликована: Июль 4, 2023

The likelihood of surface water and groundwater contamination is higher in regions close to landfills due the possibility leachate percolation, which a potential source pollution. Therefore, proposing reliable framework for monitoring parameters an essential task managers authorities quality control. For this purpose, efficient hybrid artificial intelligence model based on grey wolf metaheuristic optimization algorithm extreme learning machine (ELM-GWO) used predicting landfill (COD BOD5) (turbidity EC) at Saravan landfill, Rasht, Iran. In study, samples were collected from wells. Moreover, concentration different physico-chemical heavy metal (Cd, Cr, Cu, Fe, Ni, Pb, Mn, Zn, turbidity, Ca, Na, NO3, Cl, K, COD, EC, TDS, pH, K). results obtained ELM-GWO compared with four models: multivariate adaptive regression splines (MARS), (ELM), multilayer perceptron neural network (MLPANN), integrated (MLPANN-GWO). study confirm that considerably enhanced predictive performance MLPANN-GWO, ELM, MLPANN, MARS models terms root-mean-square error, respectively, by 43.07%, 73.88%, 74.5%, 88.55% COD; 23.91%, 59.31%, 62.85%, 77.71% BOD5; 14.08%, 47.86%, 53.43%, 57.04% turbidity; 38.57%, 59.64%, 67.94%, 74.76% EC. can be applied as robust approach investigating sites.

Язык: Английский

Процитировано

12

Prediction of compressive strength of high-performance concrete using optimization machine learning approaches with SHAP analysis DOI

Md Mahamodul Islam,

Pobithra Das,

Md Mahbubur Rahman

и другие.

Journal of Building Pathology and Rehabilitation, Год журнала: 2024, Номер 9(2)

Опубликована: Май 24, 2024

Язык: Английский

Процитировано

4

Machine Learning for Defect Condition Rating of Wall Wooden Columns in Ancient Buildings DOI Creative Commons
Yufeng Li, Wu Ouyang,

Zhenbo Xin

и другие.

Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04458 - e04458

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

How machine learning can transform the future of concrete DOI
Kaoutar Mouzoun, Azzeddine Bouyahyaoui,

Hanane Moulay Abdelali

и другие.

Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

0

Ultrasonic detection and deep learning for high-precision concrete strength prediction DOI
Xu Gan, Wei Wang,

Chenhui Jiang

и другие.

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112372 - 112372

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Optimized neural network for soil moisture prediction in precision agriculture DOI

Prity Soni,

Rohit Kumar, Sudhanshu Mishra

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117380 - 117380

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Prediction of compressive strength of blended concrete with Alccofine and GGBFS by applying ensemble machine learning algorithms DOI

A. Punitha,

C. Vivek Kumar,

R. Swetha

и другие.

Journal of Structural Integrity and Maintenance, Год журнала: 2025, Номер 10(2)

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

0

Compressive Strength Prediction of Geopolymers Using Stacking Ensemble and Fuzzy Splitting DOI
Sourav Das, Satyabrata Roy,

Srivaishnavi Yaddanapudi

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Anticipation of shear strength of recycled aggregate reinforced concrete beams: a novel hybrid RF-TGC model and realistic implementation DOI
Duy‐Liem Nguyen,

Tan‐Duy Phan

Asian Journal of Civil Engineering, Год журнала: 2024, Номер unknown

Опубликована: Сен. 16, 2024

Язык: Английский

Процитировано

3